Net Zero
by 2050
A Roadmap for the
Global Energy
Sector
Net Zero
by 2050
A Roadmap for the
Global Energy Sector
Net Zero by 2050 Interactive
iea.li/nzeroadmap
Net Zero by 2050 Data
iea.li/nzedata
IEA member
countries:
Australia
Austria
Belgium
Canada
Czech Republic
Denmark
Estonia
Finland
France
Germany
Greece
Hungary
Ireland
Italy
Japan
Korea
Luxembourg
Mexico
Netherlands
New Zealand
Norway
Poland
Portugal
Slovak Republic
Spain
Sweden
Switzerland
Turkey
United Kingdom
United States
The European
Commission also
participates in the
work of the IEA
IEA association
countries:
Brazil
China
India
Indonesia
Morocco
Singapore
South Africa
Thailand
INTERNATIONAL ENERGY
AGENCY
The IEA examines the
full spectrum
of energy issues
including oil, gas and
coal supply and
demand, renewable
energy technologies,
electricity markets,
energy efficiency,
access to energy,
demand side
management and
much more. Through
its work, the IEA
advocates policies
that will enhance the
reliability, affordability
and sustainability of
energy in its
30 member
countries,
8 association
countries and
beyond.
Please note that this
publication is subject to
specific restrictions that limit
its use and distribution. The
terms and conditions are
available online at
www.iea.org/t&c/
This publication and any
map included herein are
without prejudice to the
status of or sovereignty over
any territory, to the
delimitation of international
frontiers and boundaries and
to the name of any territory,
city or area.
Source: IEA. All rights
reserved.
International Energy Agency
Website: www.iea.org
Revised version,
October 2021 (4
th
revision)
Information notice
found at: www.iea.org/
corrections
Foreword 3
Foreword
Weareapproachingadecisivemomentforinternationaleffortstotackletheclimatecrisis–
agreatchallengeofourtimes.Thenumberofcountriesthathavepledgedtoreachnet‐zero
emissionsbymid‐centuryorsoonaftercontinuestogrow,butsodoglobalgreenhousegas
emissions.Thisgapbetweenrhetoricandactionneedstocloseifwearetohaveafighting
chanceofreachingnetzeroby2050andlimitingtheriseinglobaltemperaturesto1.5°C.
Doingsorequiresnothingshortofatotaltransformationoftheenergysystemsthatunderpin
oureconomies.Weareinacriticalyearatthestartofacriticaldecadefortheseefforts.The
26thConferenceoftheParties(COP26)oftheUnitedNationsFrameworkConventionon
ClimateChangeinNovemberisthefocalpointforstrengtheningglobalambitionsandaction
onclimatebybuildingonthefoundationsofthe2015ParisAgreement.TheInternational
Energy Agency (IEA) has been working hard to support the UK government’s COP26
Presidencytohelpmakeitthesuccesstheworldneeds.Iwasdelightedtoco‐hosttheIEA‐
COP26NetZeroSummitwithCOP26PresidentAlokSharmainMarch,wheretopenergyand
climateleadersfrommorethan40countrieshighlightedtheglobalmomentumbehindclean
energytransitions.
Thediscussions atthat event fed intothis special report, notablythroughtheSevenKey
PrinciplesforImplementingNetZerothattheIEApresentedattheSummit,whichhavebeen
backedby22ofourmembergovernmentstodate.Thisreportmapsout howtheglobal
energysectorcanreachnetzeroby2050.Ibelievethereport–NetZeroby2050:Aroadmap
fortheglobalenergysystem–isoneofthemostimportantandchallengingundertakingsin
theIEAshistory.TheRoadmapistheculminationoftheIEAspioneeringworkonenergy
datamodelling,combiningforthefirsttimethecomplexmodelsofourtwoflagshipseries,
theWorldEnergyOutlookandEnergyTechnologyPerspectives.ItwillguidetheIEA’swork
andwillbeanintegralpartofboththoseseriesgoingforward.
Despitethecurrentgapbetweenrhetoricandrealityonemissions,ourRoadmapshowsthat
therearestillpathwaystoreachnetzeroby2050.Theoneonwhichwefocusis–inour
analysis–themosttechnicallyfeasible,cost‐effectiveandsociallyacceptable.Evenso,that
pathway remains narrow and extremely challenging, requiring allstakeholders–
governments,businesses,investorsandcitizens–totakeactionthisyearandeveryyear
aftersothatthegoaldoesnotslipoutofreach.
This report sets out clear milestones – more than 400 in total, spanning all sectors and
technologies–forwhatneedstohappen,andwhen,totransformtheglobaleconomyfrom
onedominatedbyfossilfuelsintoonepoweredpredominantlyby renewableenergylike
solarandwind.Ourpathwayrequiresvastamountsofinvestment,innovation,skilfulpolicy
designandimplementation,technologydeployment,infrastructurebuilding,international
co‐operationandeffortsacrossmanyotherareas.
SincetheIEA’sfoundingin1974,oneofitscoremissionshasbeentopromotesecureand
affordableenergysuppliestofostereconomicgrowth.Thishasremainedakeyconcernof
ourRoadmap,drawingonspecialanalysiscarriedoutwiththeInternationalMonetaryFund
and the International Institute for Applied Systems Analysis. It shows that the enormous
IEA. All rights reserved.
4 International Energy Agency | Special Report
challengeoftransformingourenergysystemsisalsoahugeopportunityforoureconomies,
withthepotentialtocreatemillionsofnewjobsandboosteconomicgrowth.
AnotherguidingprincipleoftheRoadmapisthatcleanenergytransitionsmustbefairand
inclusive,leavingnobodybehind.Wehavetoensurethatdevelopingeconomiesreceivethe
financingandtechnologicalknow‐howtheyneedtocontinuebuildingtheirenergysystems
tomeettheneedsoftheirexpandingpopulationsandeconomiesinasustainableway.Itis
amoralimperativetobringelectricitytothehundredsofmillionsofpeoplewhocurrently
aredeprivedofaccesstoit,themajorityinoftheminAfrica.
Thetransitiontonetzeroisforandaboutpeople.Itisparamounttoremainawarethatnot
everyworkerinthefossilfuelindustrycaneaseintoacleanenergyjob,sogovernments
needtopromotetraininganddevoteresources tofacilitatingnewopportunities.Citizens
mustbeactiveparticipantsintheentireprocess,makingthemfeelpartofthetransitionand
notsimplysubjecttoit.Thesethemesareamongthosebeingexplored by the Global
CommissiononPeople‐CentredCleanEnergyTransitions,whichIconvenedatthestartof
2021 to examine how to enable citizens to benefit from the opportunities and navigate
the disruptions of the shift to a clean energy economy. Headed byPrimeMinister
MetteFrederiksen of Denmark and composed of government leaders, ministers and
prominentthinkers,theGlobalCommissionwillmakepublicitskeyrecommendationsahead
ofCOP26inNovember.
ThepathwaylaidoutinourRoadmapisglobalinscope,buteachcountrywillneedtodesign
itsownstrategy,takingintoaccountitsspecificcircumstances.Thereisnoone‐size‐fits‐all
approach to clean energy transitions. Plans need to reflect countries’ differing stages of
economicdevelopment:inourpathway,advancedeconomiesreachnet zero before
developingeconomiesdo.Astheworld’sleadingenergyauthority,theIEAstandsreadyto
provide governments with support and advice as they design and implement their own
roadmaps,andtoencouragetheinternationalco‐operationacrosssectorsthatissoessential
toreachingnetzeroby2050.
Thislandmarkreportwouldnothavebeenpossiblewithouttheextraordinarydedicationof
theIEAcolleagueswhohaveworkedsotirelesslyandrigorouslyonit.Iwouldliketothank
the entire team under the outstanding leadership of my colleagues LauraCozzi and
TimurGül.
The world has a huge challenge ahead of it to move net zero by 2050 from a narrow
possibility to a practical reality. Global carbon dioxide emissions are already rebounding
sharplyaseconomiesrecoverfromlastyear’spandemic‐inducedshock.Itispasttimefor
governmentstoact,andactdecisivelytoacceleratethecleanenergytransformation.
Asthisreportshows,weattheIEAarefullycommittedtoleadingthoseefforts.
DrFatihBirol
ExecutiveDirector
InternationalEnergyAgency
Acknowledgements 5
Acknowledgements
Thisstudy,across‐agencyeffort,waspreparedbytheWorldEnergyOutlookteamandthe
EnergyTechnologyPerspectivesteam.ThestudywasdesignedanddirectedbyLauraCozzi,
ChiefEnergyModellerandHeadofDivisionforEnergyDemandOutlook, and TimurGül,
HeadofDivisionforEnergyTechnologyPolicy.
The lead authors and co‐ordinators were: StéphanieBouckaert, AraceliFernandezPales,
ChristopheMcGlade, UweRemme and BrentWanner. LaszloVarro, Chief Economist,
DavideD’AmbrosioandThomasSpencerwerealsopartofthecoreteam.
The other main authors were: ThibautAbergel (buildings), YasmineArsalane (economic
outlook,electricity),PraveenBains(biofuels),JoseMiguelBermudezMenendez(hydrogen),
ElizabethConnelly (transport), DanielCrow (behaviour), AmritaDasgupta (innovation),
ChiaraDelmastro (buildings), TimothyGoodson (buildings, bioenergy), AlexandreGouy
(industry), PaulHugues (industry), LillyLee (transport), PeterLevi (industry),
HanaMandova (industry), ArianeMillot (buildings), PawełOlejarnik (fossil fuel supply),
LeonardoPaoli (innovation, transport), FaidonPapadimoulis(datamanagement),
SebastianPapapanagiotou (electricity networks), FrancescoPavan (hydrogen),
ApostolosPetropoulos (transport), RyszardPośpiech(datamanagement),LeonieStaas
(behaviour, industry), JacopoTattini (transport), JacobTeter (transport), GianlucaTonolo
(energyaccess),TiffanyVass(industry)andDanielWetzel(jobs).
Other contributors were: Lucila Arboleya Sarazola, Simon Bennett, Cyril Cassisa, Arthur
Contejean, Musa Erdogan, Enrique Gutierrez Tavarez, Taku Hasegawa,ShaiHassid,Zoe
Hungerford, Tae‐Yoon Kim, Vanessa Koh, Luca Lo Re, Christopher Lowans, Raimund
Malischek,MariachiaraPolisenaandPerAndersWidell.
CarolineAbettan,TeresaCoon,MarinaDosSantos,MarieFournier‐S’niehotta,RekaKoczka
andDianaLouis
providedessentialsupport.
EdmundHoskercarriededitorialresponsibilityandDebraJustuswasthecopy‐editor.
The International Monetary Fund (IMF), in particular BenjaminHunt, FlorenceJaumotte,
JaredThomasBebee and SusannaMursula, partnered with the IEA toprovidethe
macroeconomicanalysis.TheInternationalInstituteforAppliedSystemsAnalysis(IIASA),in
particularPeterRafaj,GregorKiesewetter,WolfgangSchöpp,ChrisHeyes,ZbigniewKlimont,
PallavPurohit,LauraWarnecke,BinhNguyen,NicklasForsell,StefanFrank,PetrHavlikand
MykolaGusti, partnered with the IEA to provide analysis and related indicators on air
pollutionandgreenhousegasemissionsfromlanduse.
Valuable comments and feedback were provided by other senior management and
numerous other colleagues within the International Energy Agency. In particular
KeisukeSadamori, MechthildWörsdörfer, AmosBromhead, DanDorner, NickJohnstone,
PascalLaffont, TorilBosoni, PeterFraser, PaoloFrankl, TimGould, TomHowes,
BrianMotherway, Aad van Bohemen, César Alejandro Hernández, Samantha McCulloch,
SaraMoarif, HeymiBahar, AdamBaylin‐Stern, NielsBerghout, SaraBudinis,
Jean‐BaptisteDubreuil, Carlos Fernández Alvarez,Ilkka Hannula , Jeremy Moorhouse and
StefanLorenczik.
IEA. All rights reserved.
6 International Energy Agency | Special Report
Valuableinputtotheanalysiswasprovidedby:TrevorMorgan(independentconsultant)and
DavidWilkinson(independentconsultant).
ThanksgototheIEACommunicationsandDigitalOffice(CDO),particularlytoJadMouawad,
HeadofCDO,andtoAstridDumond,JonCuster,TanyaDyhin,MerveErdil,GraceGordon,
ChristopherGully,JethroMullen,JuliePuech,RobStone,GregoryViscusi,ThereseWalshand
WonjikYangfortheirhelpinproducingandpromotingthereportandwebsitematerials.
Finally,thankstoIvoLetraoftheIEAInformationSystemsUnitforhisessentialsupportin
theproductionprocess,andtotheIEA’sOfficeofLegalCounsel,OfficeofManagementand
Administration, and EnergyData Centre forthe assistance eachprovided throughoutthe
preparationofthisreport.
Peerreviewers
Manysenior government officialsand international experts providedinput and reviewed
preliminarydraftsofthereport.Theircommentsandsuggestionswereofgreatvalue.They
include:
AimeeAguilarJaber OrganisationforEconomicCo‐operationandDevelopment(OECD)
KeigoAkimoto ResearchInstituteofInnovativeTechnologyfortheEarth,Japan
DougArent NationalRenewableEnergyLaboratory(NREL),UnitedStates
DanielBalog PermanentDelegationofHungarytotheOECD
GeorgBäuml Volkswagen
HarmeetBawa HitachiABBPowerGrids
PeteBetts GranthamResearchInstituteonClimateChangeandthe
Environment,UnitedKingdom
SamaBilbaoyLeon WorldNuclearAssociation
DianeCameron NuclearEnergyAgency
RebeccaCollyer EuropeanClimateFoundation
RussellConklin USDepartmentofEnergy
FrançoisDassa EDF
JeltedeJong MinistryofEconomicAffairsandClimatePolicy,TheNetherlands
CarldeMaré ArcelorMittal
GuillaumeDeSmedt AirLiquide
AgustinDelgado Iberdrola
JohannaFiksdahl PermanentDelegationofNorwaytotheOECD
AlanFinkel SpecialAdvisortotheAustralianGovernmentonLowEmissions
Technology
NiklasForsell InternationalInstituteforAppliedSystemsAnalysis(IIASA)
JamesFoster UKDepartmentforBusiness,EnergyandIndustrialStrategy
HiroyukiFukui Toyota
RosannaFusco Eni
LiGao MinistryofEcologyandEnvironmentofthePeople’sRepublicof
China
Acknowledgements 7
FrançoisGautier PermanentDelegationofFrancetotheOECD
OliverGeden GermanInstituteforInternationalandSecurityAffairs
DolfGielen InternationalRenewableEnergyAgency(IRENA)
FrancescaGostinelli Enel
JaeH.Jung MinistryofForeignAffairs,RepublicofKorea
MichaelHackethal MinistryforEconomicAffairsandIndustry,Germany
PeterWood Shell
SelwinHart UnitedNations
DavidHawkings NaturalResourcesDefenseCouncil
JacobHerbers USDepartmentofEnergy
TakashiHongo Mitsui&Co.GlobalStrategicStudiesInstitute,Japan
ChristinaHood CompassClimate,NewZealand
MichaelKelly WorldLPGAssociation
SirDavidKing CambridgeUniversity
KenKoyama TheInstituteofEnergyEconomics,Japan
FabienKreuzer DGEnergy,EuropeanCommission
JoyceLee GlobalWindEnergyCouncil(GWEC)
ChenLinhao MinistryofScienceandTechnologyofthePeople’sRepublicof
China
ToddLitman VictoriaTransportPolicyInstitute,Canada
ClaudeLorea GlobalCementandConcreteAssociation
RituMathur TheEnergyandResourcesInstitute(TERI)
VincentMinier SchneiderElectric
SteveNadel AmericanCouncilforanEnergy‐EfficientEconomy
StefanNowak TechnologyCollaborationProgrammeonPhotovoltaicPower
Systems(PVPSTCP)
BrianÓGallachóir MaREI,SFIResearchCentreforEnergy,ClimateandMarine,
UniversityCollegeCork
HenriPaillère InternationalAtomicEnergyAgency(IAEA)
YongdukPak KoreaEnergyEconomicsInstitute(KEEI)
AlessandraPastorelli PermanentDelegationofItalytotheOECD
JonathanPershing USStateDepartment
GlenPeters CentreforInternationalClimateandEnvironmentalResearch
(CICERO)
StephaniePfeifer InstitutionalInvestorsGrouponClimateChange(IIGCC)
CédricPhilibert Independentconsultant
LynnPrice LawrenceBerkeleyNationalLaboratory,UnitedStates
AndrewPurvis WorldSteel
JuliaReinaud BreakthroughEnergy
YaminaSaheb OpenEXP
IgnacioSantelices SustainableEnergyAgency,Chile
AndreasSchäfer UniversityCollegeLondon
VivianScott TheUniversityofEdinburgh
8 International Energy Agency | Special Report
SimonSharpe CabinetOffice,UnitedKingdom
AdnanShihabEldin FormerlyKuwaitFoundationfortheAdvancementofSciences
ToshiyukiShirai MinistryofEconomy,TradeandIndustry,Japan
AdamSieminski KAPSARC
StephanSinger ClimateActionNetwork
VarunSivaram USStateDepartment
JimSkea ImperialCollegeLondon
JeffStehm TaskForceonClimate‐RelatedFinancialDisclosures
JonathanStern OxfordInstituteforEnergyStudies
WimThomas Independentconsultant
DavidTurk USDepartmentofEnergy
FritjofUnander ResearchCouncilofNorway
RobvanderMeer TheEuropeanCementAssociation(CEMBUREAU)
NoévanHulst InternationalPartnershipforHydrogenandFuelCellsinthe
Economy
TomvanIerland DGforClimateAction,EuropeanCommission
DavidVictor UniversityofCalifornia,SanDiego
AmandaWilson NaturalResourcesCanada
HaraldWinkler UniversityofCapeTown
MarkusWolf ElectricPowerResearchInstitute(EPRI),UnitedStates
MarkusWråke SwedishEnergyResearchCentre
WilliamZimmern BP
Theindividualsandorganisationsthatcontributedtothisstudyarenotresponsibleforany
opinionsorjudgmentsitcontains.Allerrorsandomissionsaresolelytheresponsibilityofthe
IEA.
This document and any map included herein are without prejudicetothestatusofor
sovereigntyoveranyterritory,tothedelimitationofinternationalfrontiersandboundaries
andtothenameofanyterritory,cityorarea.
Commentsandquestionsarewelcomeandshouldbeaddressedto:
LauraCozziandTimurGül
DirectorateofSustainability,TechnologyandOutlooks
InternationalEnergyAgency
9,ruedelaFédération
75739ParisCedex15
France
E‐mail:IEAN[email protected]
Web:www.iea.org
Table of Contents 9
TableofContents
Foreword...........................................................................................................................3
Acknowledgements...........................................................................................................5
Executivesummary.........................................................................................................13
Announcednetzeropledgesandtheenergysector 29
1.1 Introduction...................................................................................................30
1.2 Emissionsreductiontargetsandnetzeropledges........................................31
1.2.1 NationallyDeterminedContributions...............................................31
1.2.2 Net‐zeroemissionspledges...............................................................32
1.3 OutlookforemissionsandenergyintheSTEPS............................................36
1.3.1 CO
2
emissions....................................................................................36
1.3.2 Totalenergysupply,totalfinalconsumptionandelectricity
generation.........................................................................................37
1.3.3 Emissionsfromexistingassets..........................................................39
1.4 AnnouncedPledgesCase...............................................................................40
1.4.1 CO
2
emissions....................................................................................41
1.4.2 Totalenergysupply...........................................................................43
1.4.3 Totalfinalconsumption.....................................................................44
1.4.4 Electricitygeneration.........................................................................45
Aglobalpathwaytonet‐zeroCO₂emissionsin2050 47
2.1 Introduction...................................................................................................48
2.2 Scenariodesign..............................................................................................48
2.2.1 PopulationandGDP...........................................................................50
2.2.2 EnergyandCO
2
prices........................................................................51
2.3 CO
2
emissions................................................................................................53
2.4 Totalenergysupplyandtotalfinalconsumption..........................................56
2.4.1 Totalenergysupply...........................................................................56
2.4.2 Totalfinalconsumption.....................................................................60
2.5 Keypillarsofdecarbonisation.......................................................................64
2.5.1 Energyefficiency................................................................................65
2.5.2 Behaviouralchange...........................................................................67
2.5.3 Electrification.....................................................................................70
1
2
IEA. All rights reserved.
10 International Energy Agency | Special Report
2.5.4 Renewables.......................................................................................73
2.5.5 Hydrogenandhydrogen‐basedfuels.................................................75
2.5.6 Bioenergy...........................................................................................77
2.5.7 Carboncapture,utilisationandstorage............................................79
2.6 Investment....................................................................................................81
2.7 Keyuncertainties...........................................................................................83
2.7.1 Behaviouralchange...........................................................................84
2.7.2 Bioenergyandland‐usechange.........................................................90
2.7.3 CCUSappliedtoemissionsfromfossilfuels......................................94
Sectoralpathwaystonet‐zeroemissionsby2050 99
3.1 Introduction.................................................................................................100
3.2 Fossilfuelsupply.........................................................................................100
3.2.1 EnergytrendsintheNet‐ZeroEmissionsScenario..........................100
3.2.2 Investmentinoilandgas.................................................................103
3.2.3 Emissionsfromfossilfuelproduction..............................................104
3.3 Low‐emissionsfuelsupply...........................................................................105
3.3.1 EnergytrendsintheNet‐ZeroEmissionsScenario..........................105
3.3.2 Biofuels............................................................................................106
3.3.3 Hydrogenandhydrogen‐basedfuels...............................................108
3.3.4 Keymilestonesanddecisionpoints.................................................111
3.4 Electricitysector..........................................................................................113
3.4.1 EnergyandemissionstrendsintheNet‐ZeroEmissionsScenario..113
3.4.2 Keymilestonesanddecisionpoints.................................................117
3.5 Industry.......................................................................................................121
3.5.1 EnergyandemissiontrendsintheNet‐ZeroEmissionsScenario....121
3.5.2 Keymilestonesanddecisionpoints.................................................129
3.6 Transport.....................................................................................................131
3.6.1 EnergyandemissiontrendsintheNet‐ZeroEmissionsScenario....131
3.6.2 Keymilestonesanddecisionpoints.................................................138
3.7 Buildings......................................................................................................141
3.7.1 EnergyandemissiontrendsintheNet‐ZeroEmissionsScenario....141
3.7.2 Keymilestonesanddecisionpoints.................................................147
3
Table of Contents 11
Widerimplicationsofachievingnet‐zeroemissions 151
4.1 Introduction.................................................................................................152
4.2 Economy......................................................................................................153
4.2.1 Investmentandfinancing................................................................153
4.2.2 Economicactivity.............................................................................155
4.2.3 Employment....................................................................................157
4.3 Energyindustry............................................................................................160
4.3.1 Oilandgas.......................................................................................160
4.3.2 Coal..................................................................................................162
4.3.3 Electricity.........................................................................................163
4.3.4 Energy‐consumingindustries..........................................................165
4.4 Citizens........................................................................................................167
4.4.1 Energy‐relatedSustainableDevelopmentGoals.............................167
4.4.2 Affordability.....................................................................................170
4.4.3 Behaviouralchanges........................................................................173
4.5 Governments...............................................................................................175
4.5.1 Energysecurity................................................................................175
4.5.2 Infrastructure...................................................................................180
4.5.3 Taxrevenuesfromretailenergysales.............................................183
4.5.4 Innovation........................................................................................184
4.5.5 Internationalco‐operation..............................................................187
Annexes 191
AnnexA.Tablesforscenarioprojections.......................................................................193
AnnexB.Technologycosts............................................................................................201
AnnexC.Definitions......................................................................................................203
AnnexD.References.....................................................................................................217
4
IEA. All rights reserved.
Summary for policy makers 13
Summaryforpolicymakers
The energy sector is the source of around three‐quarters of greenhouse gas emissions
today and holds the key to averting the worst effects of climate change, perhaps the
greatestchallengehumankindhasfaced.Reducingglobalcarbondioxide(CO
2
)emissionsto
netzeroby2050isconsistentwitheffortstolimitthelong‐termincreaseinaverageglobal
temperaturesto1.5°C.Thiscallsfornothinglessthanacompletetransformationofhowwe
produce,transportandconsumeenergy.Thegrowingpoliticalconsensusonreachingnet
zeroiscausefor considerableoptimismabout theprogressthe world canmake,butthe
changesrequiredtoreachnet‐zeroemissionsgloballyby2050arepoorlyunderstood.Ahuge
amountofworkisneededtoturntoday’simpressiveambitionsintoreality,especiallygiven
therangeofdifferentsituationsamongcountriesandtheirdifferingcapacitiestomakethe
necessarychanges.ThisspecialIEAreportsetsoutapathwayforachievingthisgoal,resulting
inacleanandresilientenergysystemthatwouldbringmajorbenefitsforhumanprosperity
andwell‐being.
The global pathway to net‐zero emissions by 2050 detailed in this report requires all
governmentstosignificantlystrengthenandthensuccessfullyimplementtheirenergyand
climate policies.Commitmentsmadetodatefallfarshortofwhatisrequiredbythat
pathway. The number of countries that have pledged to achieve net‐zero emissions has
grownrapidlyoverthelastyearandnowcoversaround70%ofglobalemissionsofCO
2
.This
isahugestepforward.However,mostpledgesarenotyetunderpinnedbynear‐termpolicies
andmeasures.Moreover,evenifsuccessfullyfulfilled,thepledgestodatewouldstillleave
around22billiontonnesofCO
2
emissionsworldwidein2050.Thecontinuationofthattrend
wouldbeconsistentwithatemperaturerisein2100ofaround2.1°C.Globalemissionsfell
in2020becauseof the Covid‐19 crisisbutarealready reboundingstronglyaseconomies
recover.Furtherdelayinactingtoreversethattrendwillputnetzeroby2050outofreach.
InthisSummaryforPolicyMakers,weoutlinetheessentialconditionsfortheglobalenergy
sector to reach net‐zero CO
2
emissions by 2050.The pathway described indepthinthis
reportachievesthisobjectivewithnooffsetsfromoutsidetheenergysector,andwithlow
relianceonnegativeemissionstechnologies.Itisdesignedtomaximisetechnicalfeasibility,
cost‐effectiveness and social acceptance while ensuring continued economic growth and
secureenergysupplies.Wehighlightthepriorityactionsthatareneededtodaytoensurethe
opportunityofnetzeroby2050–narrowbutstillachievableisnotlost.Thereportprovides
a global view, but countries do not start in the same place or finish at the same time:
advanced economies have to reachnetzerobeforeemergingmarkets and developing
economies,andassistothersingettingthere.Wealsorecognisethattheroutemappedout
hereisapath,notnecessarilythepath,andsoweexaminesomekeyuncertainties,notably
concerningtherolesplayedbybioenergy,carboncaptureandbehaviouralchanges.Getting
tonetzerowillinvolvecountlessdecisionsbypeopleacrosstheworld,butourprimaryaim
istoinformthedecisionsmadebypolicymakers,whohavethegreatestscopetomovethe
worldclosertoitsclimategoals.
IEA. All rights reserved.
14 International Energy Agency | Special Report
Netzeroby2050hingesonanunprecedentedcleantechnologypushto2030
Thepathtonet‐zeroemissionsisnarrow:stayingonitrequiresimmediateandmassive
deployment of all available clean and efficient energy technologies. In the net‐zero
emissionspathwaypresentedinthisreport,theworldeconomyin2030issome40%larger
thantodaybutuses7%lessenergy.Amajorworldwidepushtoincreaseenergyefficiencyis
an essential part of these efforts, resulting in the annual rate of energy intensity
improvementsaveraging4%to2030–aboutthree‐timestheaveragerateachievedoverthe
lasttwodecades.EmissionsreductionsfromtheenergysectorarenotlimitedtoCO
2
:inour
pathway,methaneemissionsfromfossilfuelsupplyfallby75%overthenexttenyearsasa
result of a global, concerted effort to deploy all available abatement measures and
technologies.
Ever‐cheaperrenewableenergytechnologiesgiveelectricitytheedgeintheracetozero.
Ourpathwaycallsforscalingupsolarandwindrapidlythisdecade,reachingannualadditions
of630gigawatts(GW)ofsolarphotovoltaics(PV)and390GWofwindby2030,four‐times
therecordlevelssetin2020.ForsolarPV,thisisequivalenttoinstallingtheworld’scurrent
largestsolarparkroughlyeveryday.Hydropowerandnuclear,thetwolargestsourcesof
low‐carbon electricity today, provide an essential foundation for transitions. As the
electricitysectorbecomescleaner,electrificationemergesasacrucialeconomy‐widetool
forreducingemissions.Electricvehicles(EVs)gofromaround5%ofglobalcarsalestomore
than60%by2030.
Make the 2020s the decade of massive clean energy expansion
Allthetechnologiesneededtoachievethenecessarydeepcutsinglobalemissionsby
2030alreadyexist,andthepoliciesthatcandrivetheirdeploymentarealreadyproven.
AstheworldcontinuestograpplewiththeimpactsoftheCovid‐19 pandemic, it is
essential that the resulting wave of investment and spending to support economic
recoveryisalignedwiththenetzeropathway.Policiesshouldbestrengthenedtospeed
thedeploymentofcleanandefficientenergytechnologies.Mandatesandstandardsare
vital to drive consumer spending and industry investment into the most efficient
technologies.Targetsandcompetitiveauctionscanenablewindandsolartoaccelerate
theelectricitysectortransition.Fossilfuelsubsidyphase‐outs,carbonpricingandother
market reforms can ensure appropriate price signals. Policies should limit or provide
disincentivesfortheuseofcertainfuelsandtechnologies,suchasunabatedcoal‐fired
power stations, gas boilers and conventional internal combustion engine vehicles.
Governments must lead the planning and incentivising of the massive infrastructure
investment,includinginsmarttransmissionanddistributiongrids.
PRIORITYACTION
Summary for policy makers 15
Key clean technologies ramp up by 2030 in the net zero pathway
Note:MJ=megajoules;GDP=grossdomesticproductinpurchasingpowerparity.
Netzeroby2050requireshugeleapsincleanenergyinnovation
Reachingnetzeroby2050requiresfurtherrapiddeploymentofavailabletechnologiesas
wellaswidespreaduseoftechnologiesthatarenotonthemarketyet.Majorinnovation
effortsmustoccuroverthisdecadeinordertobringthesenewtechnologiestomarketin
time.MostoftheglobalreductionsinCO
2
emissionsthrough2030inourpathwaycomefrom
technologies readily available today. But in 2050, almost half the reductions come from
technologiesthatarecurrentlyatthedemonstrationorprototypephase.Inheavyindustry
andlong‐distancetransport,theshareofemissionsreductionsfromtechnologiesthatare
stillunderdevelopmenttodayisevenhigher.
Thebiggestinnovationopportunitiesconcernadvancedbatteries,hydrogenelectrolysers,
and direct air capture and storage.Together,thesethreetechnologyareasmakevital
contributions the reductions in CO
2
emissions between 2030 and 2050 in our pathway.
Innovationoverthenexttenyears–notonlythroughresearchanddevelopment(R&D)and
demonstrationbutalsothroughdeployment–needstobeaccompaniedbythelarge‐scale
constructionoftheinfrastructurethetechnologieswillneed.Thisincludesnewpipelinesto
transportcapturedCO
2
emissionsandsystemstomovehydrogenaroundandbetweenports
andindustrialzones.
10
20
30
40
50
60
2020 2030
x18
200
400
600
800
1000
1200
2020 2030
x4
SolarPV
Wind
Capacity additions
(GW)
Electriccarsales
(millions)
Energy intensityofGD
P
(MJperUSDppp)
1
2
3
4
5
2020 2030
4% per
year
IEA. All rights reserved.
16 International Energy Agency | Special Report
Prepare for the next phase of the transition by boosting innovation
Clean energy innovation must accelerate rapidly, with governments putting R&D,
demonstrationanddeploymentatthecoreofenergyandclimatepolicy.
GovernmentR&Dspendingneedstobeincreasedandreprioritised.Criticalareassuchas
electrification,hydrogen,bioenergyandcarboncapture,utilisationandstorage(CCUS)
today receive only around one‐third of the level of public R&D funding of the more
established low‐carbon electricity generation and energy efficiency technologies.
Supportisalsoneededtoacceleratetheroll‐outofdemonstrationprojects,toleverage
privateinvestmentinR&D,andtoboostoveralldeploymentlevelstohelpreducecosts.
AroundUSD90billionofpublicmoneyneedstobemobilisedgloballyassoonaspossible
tocompleteaportfolioofdemonstrationprojectsbefore2030.Currently,onlyroughly
USD25billionisbudgetedforthatperiod.Developinganddeployingthesetechnologies
would create major new industries, as well as commercial and employment
opportunities.
Annual CO
2
emissions savings in the net zero pathway, relative to 2020

20% 40% 60% 80% 100%
2030
2050
Behaviourchanges Technologiesinthemarket Technologiesunderdevelopment
PRIORITYACTION
Summary for policy makers 17
Thetransitiontonetzeroisforandaboutpeople
Atransitionofthescaleandspeeddescribedbythenetzeropathwaycannotbeachieved
withoutsustainedsupportandparticipationfromcitizens.Thechangeswillaffectmultiple
aspectsofpeople’slives–fromtransport,heatingandcookingtourbanplanningandjobs.
Weestimatethataround55%ofthecumulativeemissionsreductionsinthepathwayare
linked to consumer choices such as purchasing an EV, retrofittingahousewithenergy
efficient technologies or installing a heat pump. Behavioural changes, particularly in
advancedeconomies–suchasreplacingcartripswithwalking,cyclingorpublictransport,
or foregoing a long‐haul flight – also provide around 4% of the cumulative emissions
reductions.
Providingelectricitytoaround785millionpeoplethathavenoaccessandcleancooking
solutionsto2.6billionpeoplethatlackthoseoptionsisanintegralpartofourpathway.
Emissionsreductionshavetogohand‐in‐handwitheffortstoensureenergyaccessforallby
2030.ThiscostsaroundUSD40billionayear,equaltoaround1%ofaverageannualenergy
sectorinvestment,whilealsobringingmajorco‐benefitsfromreducedindoorairpollution.
Someofthechangesbroughtbythecleanenergytransformationmaybechallengingto
implement,sodecisionsmustbetransparent,justandcost‐effective.Governmentsneed
toensurethatcleanenergytransitionsarepeople‐centredandinclusive.Householdenergy
expenditureasashareofdisposableincome–includingpurchasesofefficientappliances
andfuelbills–risesmodestlyinemergingmarketanddevelopingeconomiesinournetzero
pathway as more people gain access to energy and demand for modern energy services
increases rapidly. Ensuring the affordability of energy for households demands close
attention:policytoolsthatcandirectsupporttothepoorestincludetaxcredits,loansand
targetedsubsidies.
Clean energy jobs will grow strongly but must be spread widely
Energy transitions have to take account of the social and economic impacts on
individualsandcommunities,andtreatpeopleasactiveparticipants.
Thetransitionto net zerobringssubstantial new opportunitiesforemployment,with
14millionjobscreatedby2030inourpathwaythankstonewactivitiesandinvestment
incleanenergy.Spendingonmoreefficientappliances,electricandfuelcellvehicles,and
building retrofits and energy‐efficient construction wouldrequire a further 16 million
workers.Buttheseopportunitiesareoftenindifferentlocations,skillsetsandsectors
thanthejobsthatwillbelostasfossilfuelsdecline.Inourpathway,around5millionjobs
arelost.Mostofthosejobsarelocatedclosetofossilfuelresources,andmanyarewell
paid,meaningstructuralchangescancauseshocksforcommunitieswithimpactsthat
persist over time. This requires careful policy attention to address the employment
PRIORITYACTION
IEA. All rights reserved.
18 International Energy Agency | Special Report
losses.Itwillbevitaltominimisehardshipsassociatedwiththesedisruptions,suchasby
retrainingworkers,locatingnewcleanenergyfacilitiesinheavilyaffectedareaswherever
possible,andprovidingregionalaid.
Global employment in energy supply in the net zero pathway, 2019-2030

Anenergysectordominatedbyrenewables
Inthenetzeropathway,globalenergydemandin2050isaround8%smallerthantoday,
but it serves an economy more than twice as big and a population with 2 billion more
people.Moreefficientuseofenergy,resourceefficiencyandbehaviouralchangescombine
tooffsetincreasesindemandforenergyservicesastheworldeconomygrowsandaccessto
energyisextendedtoall.
Insteadoffossilfuels,theenergysectorisbasedlargelyonrenewableenergy.Two‐thirds
oftotalenergysupplyin2050isfromwind,solar,bioenergy,geothermalandhydroenergy.
Solar becomes the largest source, accounting for one‐fifth of energy supplies. Solar PV
capacityincreases20‐foldbetweennowand2050,andwindpower11‐fold.
Netzeromeansahugedeclineintheuseoffossilfuels.Theyfallfromalmostfour‐fifthsof
totalenergysupplytodaytoslightlyoverone‐fifthby2050.Fossilfuelsthatremainin2050
areusedingoodswherethecarbonisembodiedintheproductsuchasplastics,infacilities
fittedwithCCUS,andinsectorswherelow‐emissionstechnologyoptionsarescarce.
Electricityaccountsforalmost50%oftotalenergyconsumptionin2050.Itplaysakeyrole
acrossallsectors–fromtransportandbuildingstoindustryandisessentialtoproducelow‐
emissionsfuelssuchashydrogen.Toachievethis,totalelectricitygenerationincreasesover
20
40
60
2019 2030
Millionjobs
Bioenergy
Electricity
Coal
Oilandgas
Losses
Growth
Summary for policy makers 19
two‐and‐a‐half‐timesbetweentodayand2050.Atthesametime,noadditionalnewfinal
investmentdecisionsshouldbetakenfornewunabatedcoalplants,theleastefficientcoal
plants are phased out by 2030, and the remaining coal plants still in use by 2040 are
retrofitted.By2050,almost90%ofelectricitygenerationcomesfromrenewablesources,
withwindandsolarPVtogetheraccountingfornearly70%.Mostoftheremaindercomes
fromnuclear.
Emissionsfromindustry,transportandbuildingstakelongertoreduce.Cuttingindustry
emissionsby95%by2050involvesmajoreffortstobuildnewinfrastructure.Afterrapid
innovationprogressthroughR&D,demonstrationandinitialdeploymentbetweennowand
2030tobringnewcleantechnologiestomarket,theworldthenhastoputthemintoaction.
Everymonthfrom2030onwards,tenheavyindustrialplantsareequippedwithCCUS,three
newhydrogen‐basedindustrialplantsarebuilt,and2GWofelectrolysercapacityareadded
atindustrialsites.Policiesthatendsalesofnewinternalcombustionenginecarsby2035and
boostelectrificationunderpinthemassivereductionintransportemissions.In2050,carson
theroadworldwiderunonelectricityorfuelcells.Low‐emissionsfuelsareessentialwhere
energyneedscannoteasilyoreconomicallybemetbyelectricity.Forexample,aviationrelies
largelyonbiofuelsandsyntheticfuels,andammoniaisvitalforshipping.Inbuildings,bans
onnewfossilfuelboilersneedtostartbeingintroducedgloballyin2025,drivingupsalesof
electricheatpumps.Mostoldbuildingsandallnewonescomplywithzero‐carbon‐ready
buildingenergycodes.
1
Set near-term milestones to get on track for long-term targets
Governmentsneedtoprovidecrediblestep‐by‐stepplanstoreachtheirnetzerogoals,
buildingconfidenceamonginvestors,industry,citizensandothercountries.
Governments must put inplacelong‐term policyframeworks to allow all branchesof
governmentandstakeholderstoplanforchangeandfacilitatean orderly transition.
Long‐termnationallow‐emissionsstrategies,calledforbytheParisAgreement,canset
outavisionfornationaltransitions,asthisreporthasdoneonagloballevel.Theselong‐
termobjectivesneedtobelinkedtomeasurableshort‐termtargetsand policies.Our
pathwaydetailsmorethan400sectoralandtechnologymilestonestoguidetheglobal
journeytonetzeroby2050.
 
1
Azero‐carbon‐readybuildingishighlyenergyefficientandeitherusesrenewableenergydirectlyorusesan
energysupplythatwillbefullydecarbonisedby2050,suchaselectricityordistrictheat.
PRIORITYACTION
IEA. All rights reserved.
20 International Energy Agency | Special Report
Key milestones in the pathway to net zero
‐5
0
5
10
15
20
25
30
35
40
2020 2025 2030 2035 2040 2045 2050
GtCO₂
Buildings Transport Industry Electricityandheat Other
2045
150 Mtlow‐carbonhydrogen
850GWelectrolysers
435Mtlow‐carbonhydrogen
3000GWelectrolysers
4GtCO
2
captured
Phase‐outof
unabatedcoalin
advancedeconomies
2030
Universalenergyaccess
60%ofglobalcar
salesareelectric
1020GWannualsolar
andwindadditions
Allnewbuildingsare
zero‐carbon‐ready
Mostnewclean
technologiesin
heavyindustry
demonstrated
atscale
Allindustrial
electricmotorsales
arebestinclass
NonewICEcarsales
2035
Overallnet‐zero
emissionselectricity
inadvanced
economies
Mostappliancesand
coolingsystemssold
arebestinclass
50%ofheavytruck
salesareelectric
7.6GtCO
2
captured
Nonewunabated
coalplantsapproved
fordevelopment
2021
2025
Nonewsalesof
fossilfuelboilers
2040
Morethan90%of
heavyindustrial
productionis
low‐emissions
2050
Almost70%of
electricitygeneration
globallyfromsolarPV
andwind
Morethan85%
ofbuildingsare
zero‐carbon‐ready
50%ofheatingdemand
metbyheatpumps
Phase‐outofall
unabatedcoalandoil
powerplants
Net‐zeroemissions
electricityglobally
50%offuelsused
inaviationare
low‐emissions
Around90%of
existingcapacityin
heavyindustries
reachesendof
investmentcycle
50%ofexisting
buildingsretrofitted
tozero‐carbon‐ready
levels
Nonewoilandgas
fieldsapprovedfor
development;no
newcoalminesor
mineextensions
Summary for policy makers 21
Thereisnoneedforinvestmentinnewfossilfuelsupplyinournetzero
pathway
Beyond projects already committed as of 2021, there are no new oil and gas fields
approvedfordevelopmentinourpathway,andnonewcoalminesormineextensionsare
required.Theunwaveringpolicyfocusonclimatechangeinthenetzeropathwayresultsin
a sharp decline in fossil fuel demand, meaning that the focus for oil and gas producers
switches entirely to output – and emissions reductions – from the operation of existing
assets.Unabatedcoaldemanddeclinesby98%tojustless than 1%oftotalenergy
usein2050.Gasdemanddeclinesby55%to1750billioncubicmetresandoildeclinesby
75%to24millionbarrelsperday(mb/d),fromaround90mb/din2020.
Cleanelectricitygeneration,networkinfrastructureandend‐usesectorsarekeyareasfor
increasedinvestment.Enablinginfrastructureandtechnologiesarevitalfortransforming
theenergysystem.Annualinvestmentintransmissionanddistributiongridsexpandsfrom
USD260billiontodaytoUSD820billionin2030.Thenumberofpublicchargingpointsfor
EVsrisesfromaround1milliontodayto40millionin2030,requiringannualinvestmentof
almostUSD90billionin2030.AnnualbatteryproductionforEVsleapsfrom160gigawatt‐
hours(GWh)todayto6600GWhin2030–theequivalentofaddingalmost20gigafactories
2
eachyearforthenexttenyears.Andtherequiredroll‐outofhydrogenandCCUSafter2030
means laying the groundwork now: annual investment in CO
2
pipelines and hydrogen‐
enablinginfrastructureincreasesfromUSD1billiontodaytoaroundUSD40billionin2030.
Drive a historic surge in clean energy investment
Policiesneedtobedesignedtosendmarketsignalsthatunlocknewbusinessmodels
andmobiliseprivatespending,especiallyinemergingeconomies.
Accelerateddeliveryofinternationalpublicfinancewillbecriticaltoenergytransitions,
especiallyindevelopingeconomies,butultimatelytheprivatesectorwillneedtofinance
most of the extra investment required. Mobilising the capital for large‐scale
infrastructurecallsforcloserco‐operation between developers, investors, public
financialinstitutionsandgovernments.Reducingrisksforinvestorswillbeessentialto
ensuresuccessfulandaffordablecleanenergytransitions.Manyemergingmarketand
developingeconomies,whichrelymainlyonpublicfundingfornewenergyprojectsand
industrialfacilities,willneedtoreformtheirpolicyandregulatoryframeworkstoattract
moreprivatefinance.Internationalflowsoflong‐termcapitaltotheseeconomieswillbe
needed to support the development of both existing and emergingcleanenergy
technologies.
2
Batterygigafactorycapacityassumption=35gigawatt‐hoursperyear.
PRIORITYACTION
IEA. All rights reserved.
22 International Energy Agency | Special Report
Clean energy investment in the net zero pathway

Anunparalleledcleanenergyinvestmentboomliftsglobaleconomicgrowth
Total annual energy investment surges to USD 5 trillion by 2030, adding an extra
0.4percentagepointayeartoannualglobalGDPgrowth,basedonourjointanalysiswith
the International Monetary Fund. This unparalleled increase – with investment in clean
energy and energy infrastructure morethantriplingalreadyby2030 – brings significant
economicbenefitsastheworldemergesfromtheCovid19crisis.Thejumpinprivateand
governmentspendingcreatesmillionsofjobsincleanenergy,includingenergyefficiency,as
wellasintheengineering,manufacturingandconstructionindustries.Allofthisputsglobal
GDP4%higherin2030thanitwouldbebasedoncurrenttrends.
Governments have a key role in enabling investment‐led growth and ensuring that the
benefitsaresharedbyall.Therearelargedifferencesinmacroeconomicimpactsbetween
regions. But government investment and public policies are essential to attract large
amountsofprivatecapitalandtohelpoffsetthedeclinesinfossilfuelincomethatmany
countrieswillexperience.Themajorinnovationeffortsneededtobringnewcleanenergy
technologies to market could boost productivity and create entirely new industries,
providingopportunitiestolocatetheminareasthatseejoblossesinincumbentindustries.
Improvementsinairqualityprovidemajorhealthbenefits,with2millionfewerpremature
deathsglobally fromairpollution in2030 than todayinour netzeropathway.Achieving
universalenergyaccessby2030wouldprovideamajorboosttowell‐beingandproductivity
indevelopingeconomies.
1
2
3
4
5
2016‐20 2030 2050
TrillionUSD(2019)
End‐use
Energyinfrastructure
Electricitygeneration
Low‐emissionsfuels
Summary for policy makers 23
Newenergysecurityconcernsemerge,andoldonesremain
Thecontractionofoilandnaturalgasproductionwillhavefar‐reachingimplicationsforall
thecountriesandcompaniesthatproducethesefuels.Nonewoilandnaturalgasfieldsare
neededinourpathway,andoilandnaturalgassuppliesbecomeincreasinglyconcentrated
inasmallnumberoflowcostproducers.Foroil,theOPECshareofamuch‐reducedglobal
oilsupplyincreasesfromaround37%inrecentyearsto52%in2050,alevelhigherthanat
anypointinthehistoryofoilmarkets.Yetannualpercapitaincomefromoilandnaturalgas
inproducereconomiesfallsbyabout75%,fromUSD1800inrecentyearstoUSD450bythe
2030s,whichcouldhaveknock‐onsocietaleffects.Structuralreformsandnewsourcesof
revenueareneeded,eventhoughtheseareunlikelytocompensatefullyforthedropinoil
andgasincome.Whiletraditionalsupplyactivitiesdecline,theexpertiseoftheoilandnatural
gasindustryfitswellwithtechnologiessuchashydrogen,CCUSandoffshorewindthatare
neededtotackleemissionsinsectorswherereductionsarelikelytobemostchallenging.
Theenergytransitionrequiressubstantialquantitiesofcriticalminerals,andtheirsupply
emergesasasignificantgrowtharea.Thetotalmarketsizeofcriticalmineralslikecopper,
cobalt,manganeseandvariousrareearthmetalsgrowsalmostsevenfoldbetween2020and
2030inthenetzeropathway.Revenuesfromthosemineralsarelargerthanrevenuesfrom
coalwellbefore2030.Thiscreatessubstantialnewopportunitiesforminingcompanies.It
alsocreatesnewenergysecurityconcerns,includingpricevolatilityandadditionalcostsfor
transitions,ifsupplycannotkeepupwithburgeoningdemand.
The rapid electrification of all sectors makes electricity even more central to energy
securityaroundtheworldthanitistoday.Electricitysystemflexibility–neededtobalance
windandsolarwithevolvingdemandpatterns–quadruplesby2050evenasretirementsof
fossilfuelcapacityreduceconventionalsourcesofflexibility.Thetransitioncallsformajor
increases in all sources of flexibility: batteries, demand response and low‐carbonflexible
powerplants,supportedbysmarterandmoredigitalelectricitynetworks.Theresilienceof
electricitysystemstocyberattacksandotheremergingthreatsneedstobeenhanced.
Address emerging energy security risks now
Ensuring uninterrupted and reliable supplies of energy and critical energy‐related
commoditiesataffordablepriceswillonlyriseinimportanceonthewaytonetzero.
Thefocusofenergysecuritywillevolveasrelianceonrenewableelectricitygrowsand
the role of oil and gas diminishes. Potential vulnerabilities from the increasing
importance of electricity include the variability of supply andcybersecurityrisks.
Governmentsneedtocreatemarketsforinvestmentinbatteries,digitalsolutionsand
electricity grids that reward flexibility and enable adequate and reliable supplies of
electricity.Thegrowingdependenceoncriticalmineralsrequiredforkeycleanenergy
technologies calls for new international mechanisms to ensure both the timely
PRIORITYACTION
IEA. All rights reserved.
24 International Energy Agency | Special Report
availabilityofsuppliesandsustainableproduction.Atthesametime,traditionalenergy
securityconcernswillnotdisappear,asoilproductionwillbecomemoreconcentrated.
Global energy security indicators in the net zero pathway
Note:mb/d=millionbarrelsperday;Mt=milliontonnes.
Internationalco‐operationispivotalforachievingnet‐zeroemissionsby2050
Making net‐zero emissions a reality hinges on a singular, unwavering focus from all
governments – working togetherwith one another, and with businesses, investors and
citizens.Allstakeholdersneedtoplaytheirpart.Thewiderangingmeasures adopted by
governmentsatalllevelsinthenetzeropathwayhelptoframe,influenceandincentivise
the purchase by consumers and investment by businesses. This includes how energy
companiesinvestinnewwaysofproducingandsupplyingenergyservices,howbusinesses
investinequipment,andhowconsumerscoolandheattheirhomes,powertheirdevicesand
travel.
Underpinningallthesechangesarepolicydecisionsmadebygovernments.Devisingcost‐
effectivenationalandregionalnetzeroroadmapsdemandsco‐operationamongallpartsof
governmentthatbreaksdownsilosandintegratesenergyintoeverycountry’spolicymaking
onfinance,labour,taxation,transportandindustry.Energyorenvironmentministriesalone
cannotcarryoutthepolicyactionsneededtoreachnetzeroby2050.
Changesinenergyconsumptionresultinasignificantdeclineinfossilfueltaxrevenues.In
manycountriestoday, taxes ondiesel,gasolineand other fossilfuelconsumptionarean
importantsourceofpublicrevenues,providingasmuchas10%insomecases.Inthenetzero
pathway,taxrevenuefromoilandgasretailsalesfallsbyabout40%between2020and2030.
Managingthisdeclinewillrequirelong‐termfiscalplanningandbudgetreforms.
10
20
30
40
50
2020 2050
20%
40%
60%
80%
100%
2020 2050
20
40
60
80
100
2020 2050
Oilsupply
(mb/d)
Shareofsolar PVandwind
inelectricitygeneration
Criticalmineralsdemand
(Mt)
52%
OPECshare
34%
Summary for policy makers 25
The net zero pathway relies on unprecedented international co‐operation among
governments,especiallyon innovationandinvestment.TheIEAstandsreadyto support
governmentsinpreparingnationalandregionalnetzeroroadmaps,toprovideguidanceand
assistanceinimplementingthem,andtopromoteinternationalco‐operationtoaccelerate
theenergytransitionworldwide.
Take international co-operation to new heights
Thisisnotsimplyamatterofallgovernmentsseekingtobringtheirnationalemissions
tonetzero–itmeanstacklingglobalchallengesthroughco‐ordinatedactions.
Governmentsmustworktogetherinaneffectiveandmutuallybeneficial manner to
implement coherent measures that cross borders. This includes carefully managing
domesticjobcreationandlocalcommercialadvantageswiththecollectiveglobalneed
for clean energy technology deployment. Accelerating innovation, developing
international standards and co‐ordinating to scale up clean technologies needs to be
doneinawaythatlinksnationalmarkets.Co‐operationmustrecognisedifferencesinthe
stagesofdevelopmentofdifferentcountriesandthevaryingsituationsofdifferentparts
ofsociety.Formanyrichcountries,achievingnet‐zeroemissionswillbemoredifficult
and costly without international co‐operation. For many developing countries, the
pathwaytonetzerowithoutinternationalassistanceisnotclear.Technicalandfinancial
supportisneededtoensuredeploymentofkeytechnologiesandinfrastructure.Without
greaterinternationalco‐operation,globalCO
2
emissionswillnotfalltonetzeroby2050.
Global energy-related CO
2
emissions in the net zero pathway and
Low International Co-operation Case
Note:Gt=gigatonnes.
10
20
30
40
2010 2030 2050 2070 2090
GtCO
2
NZE
LowInternationalCooperation Case
PRIORITYACTION
IEA. All rights reserved.
Net Zero Emissions by 2050 Interactive iea.li/nzeroadmap
2035
2020
2030
Industry
Other
Power
Transport
Unabated coal, natural gas
and oil account for over 60%
of total electricity generation
Solar PV and wind
accounts for almost
10% of total electricity
generation
Retroit rates below
1% globally
Fossil fuels account for
almost 80% of TES
40 Mt CO
2
captured
5% of global car
sales are electric
33.9
Total CO
2
emissions (Gt)
Buildings
2.9Gt
8.5Gt
1.9Gt
13.5Gt
7.2Gt
From 2021:
No new oil and gas
ields approved for
development;
no new coal mines
or mine extensions
From 2021:
No new unabated
coal plants approved
for development
Most new clean
technologies in heavy
industry demonstrated
at scale
60% of global car
sales are electric
150 Mt low-carbon
hydrogen; 850 GW
electrolysers
All new buildings are
zero-carbon-ready
Universal
energy access
1 020 GW annual
solar and wind
additions
Phase-out of unabated coal
in advanced economies
Industry
Other
Power
Transport
Buildings
1.8Gt
6.9Gt
0.9Gt
5.8Gt
5.7Gt
21.1
Total CO
2
emissions (Gt)
All industrial electric
motor sales are
best in class
Virtually all heavy industry
capacity additions are
innovative low-emissions
routes
No new internal
combustion
engine car sales
50% of heavy truck
sales are electric
4 Gt CO
2
captured
Overall net-zero emissions
electricity in advanced
economies
Most appliances and
cooling systems sold
are best in class
Capacity itted with
CCUS or co-iring
hydrogen-based
fuels reaches 6% of
total generation
Industry
Other
Power
Transport
Buildings
1.2Gt
5.2Gt
0.1Gt
2.1Gt
4.1Gt
12.8
Total CO
2
emissions (Gt)
2040
2050
Net Zero Emissions by 2050 Interactive iea.li/nzeroadmap
50% of existing
buildings retroitted to
zero-carbon-ready levels
Around 90% of
existing capacity in
heavy industries reaches
end of investment cycle
50% of fuels used
in aviation are
low-emissions
Oil demand is 50%
of 2020 level
Net-zero emissions
electricity globally
Phase-out of all
unabated coal and
oil power plants
Electrolyser capacity
reaches 2 400 GW
Industry
Other
Power
Transport
Buildings
0.7Gt
3.5Gt
-0.5Gt
-0.1Gt
2.7Gt
6.3
Total CO
2
emissions (Gt)
33.9
Total CO
2
emissions (Gt)
More than 90% of heavy
industrial production
is low-emissions
More than 85%
of buildings are
zero-carbon-ready
7.6 Gt CO
2
captured
Renewables reach
almost 90% of total
electricity generation
Almost 70% of
electricity generation
globally from solar PV
and wind
520 Mt
low-carbon
hydrogen
Industry
Other
Power
Transport
Buildings
0.1Gt
0.5Gt
-1Gt
-0.4Gt
0.7Gt
0
Total CO
2
emissions (Gt)
IEA. All rights reserved.
Chapter 1 | Announced net zero pledges and the energy sector 29
Chapter1
Announced net zero pledges and the energy sector
Therehasbeena rapid increaseoverthelastyearin thenumber of governments
pledgingtoreducegreenhousegasemissionstonetzero.Netzeropledgestodate
coveraround70%ofglobalGDPandCO
2
emissions.However,fewerthanaquarter
of announced net zero pledges are fixed in domestic legislation and few are yet
underpinnedbyspecificmeasuresorpoliciestodelivertheminfullandontime.
TheStatedPoliciesScenario(STEPS)takesaccountonlyofspecificpoliciesthatarein
placeorhavebeenannouncedbygovernments.Annualenergy‐relatedandindustrial
processCO
2
emissionsrisefrom34Gtin2020to36Gtin2030andremainaround
thisleveluntil2050.Ifemissionscontinueonthistrajectory,withsimilarchangesin
non‐energy‐relatedGHGemissions,thiswouldleadtoatemperatureriseofaround
2.7°Cby2100(witha50%probability). Renewablesprovide almost 55%ofglobal
electricitygenerationin2050(upfrom29%in2020),butcleanenergytransitionslag
inothersectors.Globalcoalusefallsby15%between2020and2050;oilusein2050
is15%higherthanin2020;andnaturalgasuseisalmost50%higher.
The Announced Pledges Case (APC) assumes that all announced national net zero
pledges are achieved in full and on time, whether or not they are currently
underpinned by specific policies. Global energy‐related and industrial process CO
2
emissions fall to 30Gt in 2030 and 22Gt in 2050. Extending thistrajectory,with
similaractiononnon‐energy‐relatedGHGemissions,wouldleadtoatemperaturerise
in2100ofaround2.1°C(witha50%probability).Globalelectricitygenerationnearly
doubles to exceed 50000TWh in 2050. The share of renewables in electricity
generationrisestonearly70%in2050.Oildemanddoesnotreturntoits2019peak
and falls about 10% from 2020 to 80mb/d in 2050. Coal use drops by 50% to
2600Mtcein2050,whilenaturalgasuseexpandsby10%to4350bcmin2025and
remainsaboutthatlevelto2050.
Efficiency, electrification and the replacement of coal by low‐emissions sources in
electricity generation play a central role in achieving net zerogoalsintheAPC,
especiallyovertheperiodto2030.Therelativecontributionsofnuclear,hydrogen,
bioenergyandCCUSvaryacrosscountries,dependingontheircircumstances.
ThedivergenceintrendsbetweentheAPCandtheSTEPSshowsthedifferencethat
currentnetzeropledgescouldmake,whileunderliningatthesametimetheneedfor
concretepoliciesandshort‐termplansthat areconsistentwithlongtermnetzero
pledges.However,theAPCalsostarklyhighlightsthatexistingnetzeropledges,even
ifdeliveredinfull,fallwellshortofwhatisnecessarytoreach global net‐zero
emissionsby2050.
SUMMARY
IEA. All rights reserved.
30 International Energy Agency | Special Report
1.1 Introduction
November2021willseethemostimportantUNFrameworkConventiononClimateChange
(UNFCCC)ConferenceoftheParties(COP26)sincetheParisAgreementwassignedin2015.
AsCOP26approaches,anincreasingnumberofcountrieshaveannouncedlong‐termgoals
to achieve net‐zero greenhouse gas (GHG) emissions over the coming decades. On
31March2021, the International Energy Agency(IEA) hosted a Net Zero Summit to take
stockofthegrowinglistofcommitmentsfromcountriesandcompaniestoreachthegoals
oftheParisAgreement,andtofocusontheactionsnecessarytostartturningthosenetzero
goalsintoreality.
Achievingthosegoalswillbedemanding.TheCovid‐19pandemicdeliveredamajorshockto
theworldeconomy,resultinginanunprecedented5.8%declineinCO
2
emissionsin2020.
However,ourmonthlydatashowthatglobalenergyrelatedCO
2
emissionsstartedtoclimb
againinDecember2020,andweestimatethattheywillreboundtoaround33gigatonnesof
carbondioxide(GtCO
2
)in2021,only1.2%belowthelevelin2019(IEA,2021).Sustainable
economicrecoverypackages
offeredauniqueopportunitytomake2019thedefinitivepeak
inglobalemissions,buttheevidencesofarpointstoareboundinemissionsinparallelwith
renewedeconomicgrowth,atleastinthenearterm(IEA,2020a).
RecentIEAanalysesexaminedthetechnologiesandpoliciesneededforcountriesand
regions to achieve net‐zero emissions energy systems. The World Energy Outlook 2020
examinedwhatwouldbeneededovertheperiodto2030toputtheworldonapathtowards
net‐zero emissions by 2050 in the context of the pandemic‐related economic recovery
(IEA,2020b).TheFasterInnovationCaseinEnergyTechnologyPerspectives2020explored
whethernet‐zeroemissionscouldbeachievedgloballyby2050throughacceleratedenergy
technologydevelopmentanddeploymentalone:itshowedthat,relativetobaselinetrends,
almost half of the emissions savings needed in 2050 to reach net‐zero emissions rely on
technologiesthatarenotyetcommerciallyavailable(IEA,2020c).
Thisspecialreport,preparedattherequestoftheUKPresidentoftheCOP26,incorporates
theinsightsandlessonslearnedfrombothreportstocreateacomprehensiveanddetailed
pathway, or roadmap, to achieve net‐zero energy‐related and industrial process CO
2
emissionsgloballyby2050.Itassessesthecostsofachievingthisgoal,thelikelyimpactson
employmentandtheeconomy,andthewiderimplicationsfortheworld.Italsohighlights
thekeymilestonesfortechnologies,infrastructure,investmentandpolicythatareneeded
alongtheroadto2050.
Thisreportissetoutinfourchapters:
Chapter 1 explores the outlook for global CO
2
emissions and energy supply and use
basedonexistingpoliciesandpledges.Itsetsoutprojectionsofglobalenergyuseand
emissionsbasedontheStatedPoliciesScenario(STEPS),whichincludesonlythefirm
policies that are in placeor havebeen announced bycountries, including Nationally
Chapter 1 | Announced net zero pledges and the energy sector 31
1
Determined Contributions. It also examines the Announced Pledges Case (APC), a
variantoftheSTEPSthatassumesthatallofthenetzerotargetsannouncedbycountries
aroundtheworldtodatearemetinfull.
Chapter2presentstheNet‐ZeroEmissionsby2050Scenario(NZE),whichdescribes
howenergydemandandtheenergymixwillneedtoevolveiftheworldistoachieve
net‐zeroemissionsby2050.Italsoassessesthecorrespondinginvestmentneedsand
exploreskeyuncertaintiessurroundingtechnologyandconsumerbehaviour.
Chapter3examinestheimplicationsoftheNZEforvarioussectors,coveringfossilfuel
supply, the supply of low‐emissions fuels (such as hydrogen, ammonia, biofuels,
syntheticfuelsandbiomethane)andtheelectricity,transport,industryandbuildings
sectors.Ithighlightsthekeychangesrequiredtoachievenet‐zeroemissionsintheNZE
andthemajormilestonesthatareneededalongtheway.
Chapter4explorestheimplicationsoftheNZEfortheeconomy,theenergyindustry,
citizensandgovernments.
1.2 Emissionsreductiontargetsandnetzeropledges
1.2.1 NationallyDeterminedContributions
Under the Paris Agreement, Parties
1
are required to submit Nationally Determined
Contributions(NDCs)totheUNFCCCandtoimplementpolicieswiththeaimofachieving
theirstatedobjectives.Theprocessisdynamic;itrequiresPartiestoupdatetheirNDCsevery
fiveyearsinaprogressivemannertoreflectthehighestpossibleambition.Thefirstroundof
NDCs, submitted by 191countries, covers more than 90% of global energy‐related and
industrial process CO
2
emissions.
2
The first NDCs included some targets that were
unconditional and others that were conditional on international support for finance,
technologyandothermeansofimplementation.
As of 23 April 2021, 80countries have submitted new or updatedNDCstotheUNFCCC,
coveringjustover40%ofglobalCO
2
emissions (Figure1.1).
3
Many of the updated NDCs
include more stringent targets than in the initial round of NDCs, or targets for a larger
number of sectors or for a broader coverage of GHGs. In addition, 27countries and the
EuropeanUnionhavecommunicatedlong‐termlowGHGemissionsdevelopmentstrategies
totheUNFCCC,asrequestedbytheParisAgreement.Someofthesestrategiesincorporate
anetzeropledge.
 
1
Partiesreferstothe197membersoftheUNFCCCwhichincludesallUnitedNationsmemberstates,United
NationsGeneralAssemblyObserverStateofPalestine,UNnon‐memberstatesNiueandtheCookIslandsand
theEuropeanUnion.
2
Unless otherwise stated, CO
2
emissions in this report refer to energy‐related and industrial process CO
2
emissions.
3
SeveralcountrieshaveindicatedthattheyintendtosubmitneworupdatedNDCslaterin2021orin2022.
IEA. All rights reserved.
32 International Energy Agency | Special Report
Figure 1.1 Number of countries with NDCs, long-term strategies and net
zero pledges, and their shares of 2020 global CO
2
emissions
IEA.Allrightsreserved.
Around 40% of countries that have ratified the Paris Agreement have updated their NDCs,
but net zero pledges cover around 70% of global CO
2
emissions
1.2.2 Net‐zeroemissionspledges
Therehasbeenarapidincreaseinthenumberofgovernmentsmakingpledgestoreduce
GHGemissionstonetzero(Figure1.2).IntheParisAgreement,countriesagreedto“achieve
abalancebetweenanthropogenicemissionsbysourcesandremovalsbysinksofgreenhouse
gasesinthesecond‐halfofthecentury”.TheIntergovernmentalPanelonClimateChange
(IPCC)SpecialReport onGlobalWarming of1.5°Chighlightedtheimportanceofreaching
net‐zero CO
2
emissions globally by mid‐century or sooner to avoid the worstimpactsof
climatechange(IPCC,2018).
Netzeroemissionspledgeshavebeen announced by national governments, subnational
jurisdictions, coalitions
4
and a large number of corporate entities (see Spotlight). As of
23April2021, 44countries and the European Union have pledged to meet a net‐zero
emissions target:in total they account for around 70% of global CO
2
emissions and GDP
(Figure1.3). Of these, ten countries have made meeting their net zero target a legal
obligation,eightareproposingtomakeitalegalobligation,andtheremainderhavemade
theirpledgesinofficialpolicydocuments.
 
4
Examplesinclude:theUN‐ledClimateAmbitionAllianceinwhichsignatoriessignaltheyareworkingtowards
achievingnet‐zeroemissionsby2050;andtheCarbonNeutralityCoalitionlaunchedattheUNClimateSummit
in2017,inwhichsignatoriescommittodeveloplong‐termlowGHGemissionsstrategiesinlinewithlimiting
temperaturerisesto1.5°C.
25%
50%
75%
100%
50
100
150
200
First
NDC
Neworupdated
NDC
NZEpledges Long‐term
strategy
NZEtargetsin
law
Numberofcountries
Shareofglobal2020CO₂emissions(rightaxis)
Chapter 1 | Announced net zero pledges and the energy sector 33
1
Figure 1.2 Number of national net zero pledges and share of global CO
2
emissions covered
IEA.Allrightsreserved.
There has been a significant acceleration in net-zero emissions pledges
announced by governments, with an increasing number enshrined in law
Notes:Inlaw=anetzeropledgehasbeenapprovedbyparliamentandislegallybinding.Proposed=anet
zeropledgehasbeenproposedtoparliamenttobevotedintolaw.Inpolicydocument=anetzeropledgehas
beenproposedbutdoesnothavelegallybindingstatus.
Figure 1.3 Coverage of announced national net zero pledges
IEA.Allrightsreserved.
Countries accounting for around 70% of global CO
2
emissions and GDP have set net zero
pledges in law, or proposed legislation or in an official policy document
Note:GDP=grossdomesticproductatpurchasingpowerparity.
20%
40%
60%
80%
100%
10
20
30
40
50
2015 2016 2017 2018 2019 2020 2021
Q1
ShareofCO₂emissions
Countrieswithpledges
Inlaw Proposed Inpolicydocuments GlobalCO₂covered(rightaxis)
20% 40% 60% 80% 100%
GDP
CO₂emissions
Population
Countries
Advancedeconomies Emergingmarketanddevelopingeconomies Notcovered
IEA. All rights reserved.
34 International Energy Agency | Special Report
IncontrasttosomeoftheshortertermcommitmentscontainedwithinNDCs,fewnetzero
pledges are supported by detailed policies and firm routes to implementation. Net‐zero
emissionspledgesalsovaryconsiderablyintheirtimescaleandscope.Somekeydifferences
include:
GHGcoverage.MostpledgescoverallGHGemissions,butsomeincludeexemptionsor
differentrulesforcertaintypesofemissions.Forexample,New Zealand’s net zero
pledgecoversallGHGsexceptbiogenicmethane,whichhasaseparatereductiontarget.
Sectoralboundaries.Somepledgesexcludeemissionsfromspecificsectorsoractivities.
For example, the Netherlands aims to achieve net‐zero GHG emissions only in its
electricitysector(aspartofanoverallaimtoreducetotalGHGemissionsby95%),and
somecountries,includingFrance,PortugalandSweden,excludeinternationalaviation
andshipping.
Useofcarbondioxideremoval(CDR).Pledgestakevaryingapproachestoaccountfor
CDRwithinacountry’ssovereignterritory.CDRoptionsincludenaturalCO
2
sinks,such
as forests and soils, as well as technological solutions, such as direct air capture or
bioenergy with carbon capture and storage. For example, Uruguayhasstatedthat
naturalCO
2
sinkswillbeusedtohelpitreachnet‐zeroemissions,whileSwitzerlandplans
touseCDRtechnologiestobalanceapartofitsresidualemissionsin2050.
Use of international mitigation transfers.SomepledgesallowGHGmitigationthat
occursoutsideacountry’sborderstobecountedtowardsthenetzerotarget,suchas
throughthetransferofcarboncredits,whileothersdonot.Forexample,Norwayallows
thepotentialuseofinternationaltransfers,whileFranceexplicitlyrulesthemout.Some
countries,suchasSweden,allowsuchtransfersbutspecifyanupperlimittotheiruse.
Timeframe.Themajorityofpledges,covering35%ofglobalCO
2
emissions in 2020,
targetnet‐zeroemissionsby2050,butFinlandaimstoreachthatgoalby2035,Austria
andIcelandby2040andSwedenby2045.Amongothers,thePeople’sRepublicofChina
(hereafterChina)andUkrainehavesetatargetdateafter2050.
How are businesses responding to the need
to reach net-zero emissions?
Therehasbeenarapid rise in net‐zero emissionsannouncements from companiesin
recentyears:asofFebruary2021,around110companiesthatconsumelargeamounts
of energy directly or produce energy‐consuming goods have announced net‐zero
emissionsgoalsortargets.
Around60‐70%ofglobalproductionofheatingandcoolingequipment,roadvehicles,
electricity and cement is from companies that have announced net‐zero emissions
targets (Figure1.4). Nearly 60% of gross revenue in the technology sector is also
generated by companies with net‐zeroemissiontargets.Inother sectors, net zero
SPOTLIGHT
Chapter 1 | Announced net zero pledges and the energy sector 35
1
pledgescover30‐40%ofairandshippingoperations,15%oftransportlogisticsand10%
of construction.
Allthese shares are likely to keepgrowingasmorecompaniesmake
pledges.
Figure 1.4 Sectoral activity of large energy-related companies with
announced pledges to reach net-zero emissions by 2050
IEA.Allrightsreserved.
Some sectors are more advanced in terms of the extent
of net zero targets by companies active in the sector
Notes:Scope1=directemissionsfromenergyandothersourcesownedorcontrolled.Scope2=indirect
emissionsfromtheproductionofelectricityandheat,andfuelspurchasedandused.Scope3=indirect
emissionsfromsourcesnotownedordirectlycontrolledbutrelatedtotheiractivities(suchasemployee
travel, extraction, transport and production of purchased materials and fuels, and end‐use of fuels,
productsandservices).PartialvaluechainincludesScope1and2emissionsandScope3emissionsin
specificgeographiclocationsorsectionsofacompany’svaluechain.
Source:IEAanalysisbasedoncompanyreportsfromthelargest10‐25companieswithineachsector.
Companypledgesmaynotbereadilycomparable.Mostcompaniesaccountforemissions
andsetnetzeropledgesbasedontheGHGProtocol(WRI,WBCSD, 2004), but the
coverageandtimeframeofthesepledgesvarieswidely.Somecover only their own
emissions,forexamplebyshiftingtotheuseofzero‐emissionselectricityinofficesand
production facilities, and by eliminating the use of oil in transport or industrial
operations,e.g.FedEx,ArcelorMittalandMaersk.Othersalsocoverwideremissionsfrom
certain parts of their values chains, e.g. Renault in Europe, or all indirect emissions
relatedtotheiractivities,e.g.Daikin,Toyota,Shell,EniandHeidelberg.Around60%of
pledgesaimtoachievenet‐zeroemissionsby2050,butseveralcompanieshavesetan
earlierdeadlineof2030or2040.
Around40%ofcompaniesthathaveannouncednetzeropledgeshaveyettosetouthow
theyaimtoachievethem.Forthosewithdetailedplans,themainoptionsincludedirect
emissionsreductions,useofCO
2
removaltechnologies,suchasafforestation,bioenergy
20% 40% 60% 80% 100%
Construction
Transportlogistics
Oilandgas
Shippingoperations
Aircraft
Passengerairlines
Steel
Technology
Power
Roadvehicles
Cement
Heatingandcooling
Scope1+2+3 Partialvaluechain Scope1+2 Notarget
IEA. All rights reserved.
36 International Energy Agency | Special Report
with carbon capture, utilisation and storage (CCUS), or direct air capture with CO
2
storage,andpurchasingemissions(creditsgeneratedthroughemissionsreductionsthat
occurelsewhere).Theuseofoffsetscouldbeacost‐effectivemechanismtoeliminate
emissionsfrompartsofvaluechainswhereemissionsreductionsaremostchallenging,
providedthatschemestogenerateemissionscreditsresultinpermanent,additionaland
verifiedemissionsreductions.However,thereislikelytobealimitedsupplyofemissions
credits consistent with net‐zero emissions globally and the useofsuchcreditscould
divertinvestmentfromoptionsthatenabledirectemissionsreductions.
1.3 OutlookforemissionsandenergyintheSTEPS
TheIEAStatedPoliciesScenario(STEPS)illustratestheconsequencesofexistingandstated
policiesfortheenergysector.Itdrawsonthelatestinformationregardingnationalenergy
andclimateplansandthepoliciesthatunderpinthem.Ittakesaccountofallpoliciesthatare
backedbyrobustimplementinglegislationorregulatorymeasures,includingtheNDCsthat
countrieshaveputforwardundertheParisAgreementuptoSeptember2020andtheenergy
componentsofannouncedeconomicstimulusandrecoverypackages.Sofar,fewnet‐zero
emissionspledgeshavebeenbackedupbydetailedpolicies,implementationplansorinterim
targets:mostnetzeropledgesthereforearenotincludedintheSTEPS.
1.3.1 CO
2
emissions
GlobalCO
2
emissionsintheSTEPSbringaboutonlyamarginaloverallimprovementinrecent
trends.Switchingtorenewablesleadstoanearlypeakinemissionsintheelectricitysector,
butreductionsacrossallsectorsfallfarshortofwhatisrequiredfornet‐zeroemissionsin
2050.AnnualCO
2
emissionsreboundquicklyfromthedipcausedbytheCovid‐19pandemic
in2020:theyincreasefrom34Gtin2020to36Gtin2030andthenremainaroundthislevel
until2050(Figure1.5).Ifemissionstrendsweretocontinuealongthesametrajectoryafter
2050, and with commensurate changes in other sources of GHG emissions, the global
averagesurfacetemperaturerisewouldbearound2.7°Cin2100(witha50%probability).
Thereisstrongdivergencebetweentheoutlookforemissionsinadvancedeconomiesonone
hand and the emerging market and developing economies on the other. In advanced
economies,despiteasmallreboundintheearly2020s,CO
2
emissionsdeclinebyabouta
thirdbetween2020and2050,thankstotheimpactofpoliciesandtechnologicalprogressin
reducingenergydemandandswitchingtocleanerfuels.Inemergingmarketanddeveloping
economies, energy demand continues to grow strongly because of increased population,
brisk economic growth, urbanisation and the expansion of infrastructure: these effects
outweigh improvements in energy efficiency and the deployment of clean technologies,
causingCO
2
emissionstogrowbyalmost20%bythemid‐2040s,beforedecliningmarginally
to2050.
Chapter 1 | Announced net zero pledges and the energy sector 37
1
Figure 1.5 Energy-related and industrial process CO
2
emissions by region
and sector in the STEPS

IEA.Allrightsreserved.
Global CO
2
emissions rebound quickly after 2020 and then plateau,
with declines in advanced economies offset by increases elsewhere
Note:Other=agricultureandownuseintheenergysector.
1.3.2 Totalenergysupply,totalfinalconsumptionand
electricitygeneration
TheprojectedtrendsinCO
2
emissionsintheSTEPSresultfromchangesintheamountof
energyusedandthe mix of fuelsandtechnologies.Total energysupply(TES)
5
worldwide
risesbyjustover30%between2020and2050intheSTEPS(Figure1.6).Withoutaprojected
annualaveragereductionof2.2%inenergyintensity,i.e.energyuseperunitofGDP,TESin
2050wouldbearound85%higher.Inadvancedeconomies,energyusefallsbyaround5%to
2050,despitea75%increaseineconomicactivityovertheperiod.Inemergingmarketand
developingeconomies,energyuseincreasesby50%to2050,reflectingatriplingofeconomic
outputbetween2020and2050.DespitetheincreaseinGDPandenergyuseinemerging
marketanddevelopingeconomies,750millionpeoplestillhavenoaccesstoelectricityin
2050,morethan95%oftheminsub‐SaharanAfrica,and1.5billionpeoplecontinuetorely
onthetraditionaluseofbioenergyforcooking.
Theglobalfuelmixchangessignificantlybetween2020and2050.Coaluse,whichpeakedin
2014,fallsbyaround15%.Havingfallensharplyin2020duetothepandemic,oildemand
reboundsquickly,returningtothe2019levelof98millionbarrelsperday(mb/d)by2023
andreachingaplateauofaround104mb/dshortlyafter2030.Naturalgasdemandincreases
from3900billioncubicmetres(bcm)in2020to4600bcmin2030and5700bcmin2050.
Nuclearenergygrowsby15%between2020and2030,mainlyreflectingexpansionsinChina.
 
5
Totalprimaryenergy supply(ortotalprimaryenergy demand)hasbeen renamedtotalenergy supplyin
accordancewiththeInternationalRecommendationsforEnergyStatistics(IEA,2020d).
10
20
30
40
2010 2030 2050
GtCO₂
Region
Advancedeconomies
Emergingmarketand
developingeconomies
Internationalbunkers
2010 2030 2050
Sector
Electricity
Industry
Transport
Buildings
Other
IEA. All rights reserved.
38 International Energy Agency | Special Report
Figure 1.6 Total energy supply and CO
2
emissions intensity in the STEPS
IEA.Allrightsreserved.
Coal use declines, oil plateaus and renewables and natural gas grow substantially to 2050
Note:EJ=exajoule;MJ=megajoule;TES=totalenergysupply.
TotalfinalconsumptionincreasesinallsectorsintheSTEPS,ledbyelectricityandnaturalgas
(Figure1.7).Allthegrowthisinemergingmarketanddevelopingeconomies.Thebiggest
changeinenergyuseisintheelectricitysector(Figure1.8). Global electricity demand
increasesby80%between2020and2050,arounddoubletheoverallrateofgrowthinfinal
energyconsumption.Morethan85%ofthegrowthinglobalelectricitydemandcomesfrom
emergingmarket and developingeconomies. Coal continues to playanimportantrolein
electricitygenerationinthoseeconomiesto2050,despitestronggrowthinrenewables:in
advancedeconomies,theuseofcoalforelectricitygenerationdropssharply.
Figure 1.7
Total final consumption by sector and fuel in the STEPS
IEA.Allrightsreserved.
Final energy consumption grows on average by 1% per year between 2020 and 2050,
with electricity and natural gas meeting most of the increase
15
30
45
60
50
100
150
200
2000 2010 2020 2030 2040 2050
gCO₂/MJ
EJ
Coal
Oil
Naturalgas Renewables
Traditionaluseofbiomass
Nuclear
CO₂intensityofTES
(rightaxis)
2010 2050
Industry TransportBuildings
2010 2050
50
100
150
200
250
2010 2050
EJ
Coal Oil Naturalgas Hydrogen Electricity
Heat ModernBioenergy Otherrenewables Traditionaluse
ofbiomass
Chapter 1 | Announced net zero pledges and the energy sector 39
1
Figure 1.8 Electricity generation by fuel and share of coal in the STEPS
IEA.Allrightsreserved.
Emerging market and developing economies drive most of the increase in global
electricity demand, met mainly by renewables and gas, though coal remains important
1.3.3 Emissionsfromexistingassets
Theenergysectorcontainsalargenumberoflong‐livedandcapital‐intensiveassets.Urban
infrastructure, pipelines, refineries, coal‐fired power plants, heavy industrial facilities,
buildingsandlargehydropowerplantscanhavetechnicalandeconomiclifetimesofwell
over50years.Iftoday’senergyinfrastructurewastobeoperateduntiltheendofthetypical
lifetimeinamannersimilartothepast,weestimatethatthiswouldleadtocumulative
energy‐relatedandindustrialprocessCO
2
emissionsbetween2020and2050ofjustunder
650GtCO
2
.Thisisaround30%morethantheremainingtotalCO
2
budgetconsistentwith
limitingglobalwarmingto1.5°Cwitha50%probability(seeChapter2).
Theelectricitysectoraccountsformorethan50%ofthetotalemissionsthatwouldcome
fromexistingassets;40%oftotalemissionswouldcomefromcoal‐firedpowerplantsalone.
Industry is the next largest sector, with steel, cement, chemicals and other industry
accounting for around 30% total emissions from existing assets.Thelonglifetimeof
productionfacilitiesinthesesub‐sectors(typically30‐40yearsforablastfurnaceorcement
kiln)andtherelativelyyoungageoftheglobalcapitalstockexplaintheirlargecontribution.
Transport accounts for just over 10% of emissions from existingassetsandthebuildings
sectoraccountsforjustunder5%.Thelifetimeofvehiclesandequipmentinthetransport
andbuildingssectorsisgenerallymuchshorterthanisthecaseinelectricityandindustry–
passengercars,forexample,aregenerallyassumedtohavealifetimeofaround17years–
butassociatedinfrastructurenetworkssuchasroads,electricitynetworksandgasgridshave
verylonglifetimes.
There are some large regional differences in emissions levels from existing assets
(Figure1.9). Advanced economies tend to have much older capital stocks than emerging
marketanddevelopingeconomies,particularlyintheelectricitysector,andexistingassets
willreachtheendoftheirlifetimesearlier.Forexample,theaverageageofcoal‐firedpower
20%
40%
60%
10
20
30
2010 2020 2030 2040 2050 2010 2020 2030 2040 2050
ThousandTWh
Coal Oil Naturalgas Nuclear Renewables Shareofcoal(rightaxis)
Advancedeconomies Emergingmarketanddevelopingeconomies
IEA. All rights reserved.
40 International Energy Agency | Special Report
plantsinChinais13yearsand16yearsintherestofAsia,comparedtoaround35yearsin
Europeand40yearsintheUnitedStates(IEA,2020e).
Figure 1.9
Emissions from existing infrastructure by sector and region
IEA.Allrightsreserved.
Emerging market and developing economies account for three-quarters
of cumulative emissions from existing infrastructure through to 2050
1.4 AnnouncedPledgesCase
TheAnnouncedPledgesCase(APC)assumesthatallnationalnet‐zeroemissionspledgesare
realisedinfullandontime.Itthereforegoesbeyondthepolicycommitmentsincorporated
intheSTEPS.TheaimoftheAPCistoseehowfarfullimplementationofthenationalnet‐
zeroemissionspledgeswouldtaketheworldtowardsreachingnetzeroemissions,andto
examinethescaleofthetransformationoftheenergysectorthatsuchapathwouldrequire.
The way these pledges are assumed to be implemented in the APC has important
implications for the energy system. A net zero pledge for all GHG emissions does not
necessarily mean that CO
2
emissionsfromtheenergysectorneedtoreachnetzero.
For
example,acountry’snetzeroplansmayenvisagesomeremainingenergy‐relatedemissions
areoffsetbytheabsorptionofemissionsfromforestryorlanduse,orbynegativeemissions
arisingfromtheuseofbioenergyordirectcaptureofCO
2
fromtheair(DAC)withCCUS.
6
It
isnotpossibletoknowexactlyhownetzeropledgeswillbeimplemented,butthedesignof
theAPC,particularlywithrespecttothedetailsoftheenergysystempathway,hasbeen
informedbythepathwaysthatanumberofnationalbodieshavedevelopedtosupportnet
zeropledges(Box1.1).Policiesincountriesthathavenotyetmadeanetzeropledgeare
assumedtobethesameasintheSTEPS.Nonpolicyassumptions,includingpopulationand
economicgrowth,arethesameasintheSTEPS.
 
6
For example, in recent economy‐widenetzeromitigationpathways for the European Union, around
140‐210milliontonnesCO
2
ofemissionsfromtheenergysectorremainin2050,whichareoffsetbyCDRfrom
managedland‐usesinks,andbioenergyandDACwithCCUS(EuropeanCommission,2018).
5
10
15
20
25
2020 2030 2040 2050
GtCO
Electricity Industry Transport Buildings Other
Advancedeconomies
2020 2030 2040 2050
Emergingmarketanddevelopingeconomies
Chapter 1 | Announced net zero pledges and the energy sector 41
1
Box 1.1 Consultations with national bodies on achieving national net-
zero emissions goals
Tohelpinformitsworkonnetzeropathways,theIEAengagedinextensiveconsultations
withexpertsinacademiaandnationalbodiesthathavedevelopedpathwaystosupport
netzeropledgesmadebygovernments.Thisincludesgroupsthathavedevelopednet‐
zeroemissionspathwaysforseveralcountriesincludingChina,EuropeanUnion,Japan,
UnitedKingdomandUnitedStates,aswellastheIPCC.Thesepathwayswerenotused
directly as input for the APC, but the discussions informed our modelling of national
preferencesandconstraintswithineachjurisdictionandtobenchmarktheoveralllevel
ofenergy‐relatedCO
2
emissionsreductionsthatarecommensuratewitheconomy‐wide
netzerogoals.
1.4.1 CO
2
emissions
IntheAPC,thereisasmallreboundinemissionsto2023,althoughthisismuchsmallerthan
theincreasethatimmediatelyfollowedthefinancialcrisisin2008‐09.Emissionsneverreach
thepreviouspeakof36GtCO
2
.GlobalCO
2
emissionsfallaround10%to30Gtin2030and
to22Gtin2050.Thisisaround35%belowthelevelin2020and14GtCO
2
lowerthaninthe
STEPS(Figure1.10).Ifemissionscontinuethistrendafter2050,andwithasimilarlevelof
changesinnon‐energy‐relatedGHGemissions,theglobalaveragesurfacetemperaturerise
in2100wouldbearound2.1°C(witha50%probability).
Figure 1.10
Global energy-related and industrial process CO
2
emissions by
scenario and reductions by region, 2010-2050
IEA.Allrightsreserved.
Achieving existing net zero pledges would reduce emissions globally to 22 Gt CO
2
in 2050,
a major reduction compared with current policies but still far from net-zero emissions
10
20
30
40
2010 2020 2030 2040 2050
GtCO₂
UnitedStates EuropeanUnion Japan Korea China Other
STEPS
APC
IEA. All rights reserved.
42 International Energy Agency | Special Report
Thenetzeropledgesthathavebeenmadetodatethereforemakeamajordifferencetothe
currenttrajectoryfor CO
2
emissions.Equally,however,existingnetzeropledgesfallwell
shortofwhatisnecessarytoreachnet‐zeroemissionsgloballyby2050.Thishighlightsthe
importanceofconcretepoliciesandplanstodeliverinfulllong‐termnetzeropledges.Italso
underlinesthevalueofothercountriesmaking(anddeliveringon)netzeropledges:themore
countriesthatdoso,andthemoreambitiousthosepledgesare,themorethegapwillnarrow
withwhatisneededtoreachnet‐zeroemissionsby2050.
ThelargestdropinCO
2
emissionsisintheAPCisintheelectricitysectorwithglobalemissions
falling by nearly 60% between 2020 and 2050. This occurs despite a near‐doubling of
electricitydemandasenergyend‐usesareincreasinglyelectrified,notablyintransportand
buildings(Figure1.11).Thiscompareswithafallinemissionsoflessthan15%intheSTEPS.
Figure 1.11
Global CO
2
emissions by sector in the STEPS and APC
IEA.Allrightsreserved.
Announced net zero pledges would cut emissions in 2050 by 60%
in the electricity sector, 40% in buildings, 25% in industry and just over 10% in transport
ThetransportandindustrysectorsseealessmarkedfallinCO
2
emissionsto2050intheAPC,
with increases in energy demand in regions without net zero pledgespartiallyoffsetting
emissionsreductioneffortsinotherregions.Emissionsfromthebuildingssectordeclineby
around40%between2020and2050,comparedwitharound5%intheSTEPS:fossilfueluse
inbuildingsismostlytoprovideheating,andcountriesthathavemadepledgesaccountfor
arelativelyhighproportionofglobalheatingdemand.
Eveninregionswithnetzeropledges,therearesomeresidualemissionsin2050,mainlyin
industry and transport. This reflects the scarcity of commercially available options to
eliminateallemissionsfromheavy‐dutytrucks,aviation,shippingandheavyindustry.
10
20
30
40
2000 2010 2020 2030 2040 2050 2030 2040 2050
GtCO₂
Other
Buildings
Transport
Industry
Electricity
STEPS APC
Chapter 1 | Announced net zero pledges and the energy sector 43
1
1.4.2 Totalenergysupply
Globaltotalenergysupplyincreasesbymorethan15%between2020and2050intheAPC,
comparedwithathirdintheSTEPS(Figure1.12).Energyintensityfallsonaveragebyaround
2.6%peryearto2050comparedwith2.2%intheSTEPS.Thereisasubstantialincreasein
energy demand in emerging market and developing economies, where economic and
populationgrowthisfastestandwheretherearefewernetzeropledges,whichoutweighs
thereductionsinenergydemandinthecountrieswithnetzeropledges.
Figure 1.12
Total energy supply by source in STEPS and APC
IEA.Allrightsreserved.
Announced net zero pledges lift renewables in the APC from 12% of total energy supply
in 2020 to 35% in 2050, mainly at the expense of coal and oil
TheglobalincreaseinenergysupplyintheAPCisledbyrenewables,whichincreasetheir
shareintheenergymixfrom12%in2020to35%by2050(comparedwith25%in2050in
theSTEPS).Solarphotovoltaics(PV)andwindintheelectricitysectortogethercontribute
about 50% of the growth in renewables supply, and bioenergy contributes around 30%.
Bioenergyusedoublesinindustry,triplesinelectricitygenerationandgrowsbyafactorof
four in transport: it plays an important role in reducing emissions from heat supply and
removingCO
2
fromtheatmospherewhenitiscombinedwithCCUS.Nuclearmaintainsits
shareoftheenergymix,itsoutputrisingbyaquarterto2030(comparedwitha15%increase
intheSTEPS),drivenbylifetime extensions at existing plants and new reactors in some
countries.
GlobalcoalusefallssignificantlymorerapidlyintheAPCthanintheSTEPS.Itdropsfrom
5250milliontonnesofcoalequivalent(Mtce)in2020to4000Mtcein2030and2600Mtce
in2050(compared with4300Mtcein the STEPS in2050). Most of thisdeclineis due to
reduced coal‐fired electricity generation in countries with net zero pledges as plants are
repurposed,retrofittedorretired.Inadvancedeconomies,unabatedcoal‐firedpowerplants
200
400
600
800
2000 2010 2020 2030 2040 2050 2030 2040 2050
EJ
Renewables
Nuclear
Naturalgas
Oil
Coal
STEPS APC
IEA. All rights reserved.
44 International Energy Agency | Special Report
aregenerallyphasedoutoverthenext10‐15years.China’scoalconsumptionforelectricity
declinesby85%between2020and2050onitspathtowardscarbonneutralityin2060.These
declinesmorethanoffsetcontinuedgrowthforcoalincountrieswithoutnetzeropledges.
Globally, coal use in industryfalls by 25%between 2020 and 2050,comparedwitha5%
declineintheSTEPS.
Oildemandrecoversslightlyintheearly2020sbutneveragainreachesitshistoricpeakin
2019.Itdeclinesto 90mb/d intheearly2030sandto80mb/din2050,around25mb/d
lowerthanintheSTEPS,thankstoastrongpushtoelectrifytransportandshiftstobiofuels
andhydrogen,especiallyinregionswithpledges.Naturalgasdemandincreasesfromabout
3900bcmin2020toaround4350bcmin2025,butisthenbroadlyflatto2050(itcontinues
togrowtoaround5700bcmintheSTEPS).
1.4.3 Totalfinalconsumption
Global energy use continues to grow in all major end‐use sectorsintheAPC,albeit
substantially more slowly than in the STEPS (Figure1.13). Total final consumption (TFC)
increasesbyaround20%in2020‐50,comparedwitha35%increasegloballyintheSTEPS.
Measuresto improve energyefficiency play a major rolein the APC in reducing demand
growthincountrieswithnetzeropledges.Withoutthoseefficiencygains,electricitydemand
growthwouldmakeitmuchharderforrenewablestodisplacefossil fuels in electricity
generation.ThebiggestreductioninenergydemandrelativetotheSTEPSisintransport,
thanksto an accelerated shift toelectric vehicles(EVs),which arearound three‐times as
energyefficientasconventionalinternalcombustionenginevehicles.
Figure 1.13
Total final consumption in the APC
IEA.Allrightsreserved.
Announced net zero pledges lead to a shift away from fossil fuels globally to electricity,
renewables and hydrogen. Electricity’s share rises from 20% to 30% in 2050
25%
50%
75%
100%
2020
2030
2040
2050
TFCshares
50
100
150
200
2020
2030
2040
2050
2020
2030
2040
2050
2020
2030
2040
2050
EJ
Coal Oil Naturalgas Hydrogen Heat Electricity Renewables Traditionaluse
ofbiomass
Industry Buildings Transport
Chapter 1 | Announced net zero pledges and the energy sector 45
1
Thefuelmix in final energyuseshifts substantially inthe APC. By 2050,electricityisthe
largest single fuel used in all sectors except transport, where oil remains dominant. The
persistenceofoilintransportstemspartlyfromtheextentofitscontinueduseincountries
withoutnetzeropledges,andpartlyfromthedifficultyofelectrifyingsubstantialpartsofthe
transportsector,notablytruckingandaviation.Electricitydoesmakeinroadsintotransport,
however,andrapidgrowthintheuptakeofEVsputsoiluseintodeclineafter2030,withEVs
accountingforaround35%ofglobalpassengercarsalesby2030andnearly50%in2050in
theAPC(versusaround25%intheSTEPSin2050).Electrificationinthebuildingssectoris
alsomuchfasterintheAPCthanintheSTEPS.
Thedirectuseofrenewablesexpandsinallend‐usesectorsgloballythroughto2050.Modern
bioenergy accounts for the bulk of this growth, predominantly through the blending of
biomethaneintonaturalgasnetworksandliquidbiofuelsintransport.Thisoccursmainlyin
regionswithnetzeropledges.Hydrogenandhydrogen‐basedfuelsplayalargerroleinthe
APCthanintheSTEPS,reachingalmost15exajoules(EJ)in2050,thoughtheystillaccount
foronly3%oftotalfinalconsumptionworldwidein2050.Transportaccountsformorethan
two‐thirdsofallhydrogenconsumptionin2050.Inparallel,on‐sitehydrogenproductionin
theindustryandrefiningsectorsgraduallyshiftstowardslow‐carbontechnologies.
1.4.4 Electricitygeneration
GlobalelectricitygenerationnearlydoublesduringthenextthreedecadesintheAPC,rising
from about 26800terawatt‐hours (TWh) in 2020 to over 50000TWh in 2050, some
4000TWhhigherthanintheSTEPS.Low‐emissionsenergysourcesprovidealltheincrease.
Theshareofrenewablesinelectricitygenerationrisesfrom29%in2020tonearly70%in
2050,comparedwithabout55%intheSTEPS,assolarPVandwindraceaheadofallother
sourcesofgeneration(Figure1.14).By2050,solarPVandwindtogetheraccountforalmost
halfofelectricitysupply.Hydropoweralsocontinuestoexpand,emergingasthethird‐largest
energy source in the electricity mix by 2050. Nuclear power increases steadily too,
maintainingitsglobalmarketshareofabout10%,ledbyincreasesinChina.Naturalgasuse
inelectricityincreasesslightlytothemid‐2020sbeforestartingtofallback,whilecoal’sshare
ofelectricitygenerationfallsfromaround35%in2020tobelow10%in2050.Atthatpoint,
20%oftheremainingcoal‐firedoutputcomesfromplantsequippedwithCCUS.
Hydrogenandammoniastarttoemergeasfuelinputstoelectricitygenerationbyaround
2030,usedlargelyincombinationwithnaturalgasingasturbinesandwithcoalincoal‐fired
power plants. This extends the life of existing assets, contributes to electricity system
adequacy and reduces the overall costs of transforming the electricity sectors in many
countries.Totalbatterycapacityalsorisessubstantially,reaching1600gigawatts(GW)in
2050,70%morethanintheSTEPS.
IEA. All rights reserved.
46 International Energy Agency | Special Report
Figure 1.14 Global electricity generation by source in the APC
IEA.Allrightsreserved.
Renewables reach new heights in the APC, rising from just under 30% of electricity supply
in 2020 to nearly 70% in 2050, while coal-fired generation steadily declines
Note:Otherrenewables=geothermal,solarthermalandmarine.
2
4
6
8
10
12
14
2010 2020 2030 2040 2050
ThousandTWh
20%
40%
60%
80%
100%
2020 2030 2050
Oil
Unabatednaturalgas
Unabatedcoal
FossilfuelswithCCUS
Hydrogenbased
Nuclear
Otherrenewables
Hydropower
Wind
SolarPV
Chapter 2 | A global pathway to net-zero CO emissions in 2050
47
Chapter2
A global pathway to net-zero CO emissions in 2050
TheNetZeroEmissionsby2050Scenario(NZE)showswhatisneededfortheglobal
energysectortoachieve net‐zeroCO
2
emissionsby2050.Alongsidecorresponding
reductionsinGHGemissionsfromoutsidetheenergysector,thisisconsistentwith
limitingtheglobaltemperatureriseto1.5°Cwithoutatemperatureovershoot(with
a 50% probability). Achieving this would require all governments to increase
ambitionsfromcurrentNationallyDeterminedContributionsandnetzeropledges.
IntheNZE,globalenergy‐relatedandindustrialprocessCO
2
emissionsfallbynearly
40%between2020and2030andtonetzeroin2050.Universalaccesstosustainable
energyisachievedby2030.Thereisa75%reductioninmethaneemissionsfromfossil
fueluseby2030.Thesechangestakeplacewhiletheglobaleconomy more than
doublesthroughto2050andtheglobalpopulationincreasesby2billion.
Totalenergysupplyfallsby7%between2020and2030intheNZEandremainsat
aroundthislevelto2050.SolarPVandwindbecometheleadingsourcesofelectricity
globallybefore2030andtogethertheyprovidenearly70%ofglobalgenerationin
2050.Thetraditionaluseofbioenergyisphasedoutby2030.
Coaldemanddeclinesby90%tolessthan600Mtcein2050,oildeclinesby75%to
24mb/d,andnaturalgasdeclinesby55%to1750bcm.Thefossilfuelsthatremain
in 2050 are used in the production of non‐energy goods where the carbon is
embodiedintheproduct(likeplastics),inplantswithcarboncapture,utilisationand
storage(CCUS),andinsectorswherelow‐emissionstechnologyoptionsarescarce.
Energyefficiency,windandsolarprovidearoundhalfofemissionssavingsto2030in
theNZE.Theycontinuetodeliveremissionsreductionsbeyond2030,buttheperiod
to2050seesincreasingelectrification,hydrogenuseandCCUSdeployment,forwhich
notalltechnologiesareavailableonthemarkettoday,andtheseprovidemorethan
half of emissions savings between 2030 and 2050. In 2050, there is 1.9Gt of CO
2
removal in the NZE and 520million tonnes of low‐carbon hydrogen demand.
Behaviouralchangesbycitizensandbusinessesavoid1.7GtCO
2
emissionsin2030,
curbenergydemandgrowth,andfacilitatecleanenergytransitions.
Annualenergysectorinvestment,whichaveragedUSD2.3trilliongloballyinrecent
years,jumpstoUSD5trillionby2030intheNZE.AsashareofglobalGDP,average
annualenergyinvestmentto2050intheNZEisaround1%higherthaninrecentyears.
TheNZEtapsintoallopportunitiestodecarbonisetheenergysector,acrossallfuels
and all technologies. But the path to 2050 has many uncertainties. If behavioural
changesweretobemorelimitedthanenvisagedintheNZE,orsustainablebioenergy
less available, then the energy transition would be more expensive. A failure to
developCCUS for fossilfuels could delayorprevent the development ofCCUSfor
processemissionsfromcementproductionandcarbonremovaltechnologies,making
itmuchhardertoachievenet‐zeroemissionsby2050.
SUMMARY
IEA. All rights reserved.
48 International Energy Agency | Special Report
2.1 Introduction
Achieving a global energy transition that is compatible with the world’s climate goals is
unquestionably a formidable task. As highlighted in Chapter 1, current pledges by
governmentstoreduceemissionstonetzerocollectivelycoveraround70%oftoday’sglobal
economicactivityandglobalCO
2
emissions.TheAnnouncedPledgesCaseshowsthat,ifall
thosepledgesweremetinfull,itwouldnarrowthegapbetweenwhereweareheadingand
whereweneedtobetoachievenet‐zeroemissionsby2050worldwide.Butitalsoshows
thatthegapwouldremainlarge.Meetingallexistingnetzeropledgesinfullwouldstillleave
22gigatonnes(Gt)ofenergy‐relatedandindustrialprocessCO
2
emissionsgloballyin2050,
consistentwithatemperaturerisein2100ofaround2.1°C(witha50%probability).
In this chapter, we examine the energy sector transformation which is embodied in our
Net‐ZeroEmissionsby2050Scenario.First,itprovidesanoverviewofthekeyassumptions
and market dynamics underlying the projections, including projected fossil fuel and CO
2
prices.ItdiscussestrendsinglobalCO
2
emissions,energyuseandinvestment,includingthe
keyrolesplayedbyefficiencymeasures,behaviouralchange,electrification, renewables,
hydrogenandhydrogen‐basedfuels,bioenergy,andcarboncapture,utilisationandstorage
(CCUS).Further,itdiscussessomeofthekeyuncertaintiessurroundingtheglobalpathway
towards net‐zero emissions related to behavioural change, the availability of sustainable
bioenergy,andthedeploymentofCCUSforfossilfuels.Thetransformationofspecificenergy
sectorsisassessedanddiscussedindetailinChapter3.
2.2 Scenariodesign
TheNet‐ZeroEmissionsby2050Scenario(NZE)isdesignedtoshowwhatisneededacross
themainsectorsbyvariousactors,andbywhen,fortheworldtoachievenet‐zeroenergy‐
related and industrial process CO
2
emissions by 2050.
1
Italsoaimstominimisemethane
emissionsfromtheenergysector.Inrecentyears,theenergysectorwasresponsiblefor
aroundthree‐quartersofglobalgreenhousegas(GHG)emissions.Achievingnet‐zeroenergy‐
relatedandindustrialprocessCO
2
emissionsby2050intheNZEdoesnotrelyonactionin
areasotherthantheenergysector,butlimitingclimatechangedoesrequiresuchaction.We
thereforeadditionallyexaminethereductionsinCO
2
emissionsfromlandusethatwouldbe
commensurate with the transformation of the energy sector in the NZE, working in
co‐operationwiththeInternationalInstituteforAppliedSystemsAnalysis(IIASA).Inparallel
withactiononreducingallothersourcesofGHGemissions,achievingnet‐zeroCO
2
emissions
fromtheenergysectorby2050isconsistentwitharounda50%chanceoflimitingthelong‐
termaverageglobaltemperatureriseto1.5°Cwithoutatemperature overshoot
(IPCC,2018).
 
1
Unlessotherwisestated,carbondioxide(CO
2
)emissionsinthischapterrefertoenergy‐relatedandindustrial
processCO
2
emissions.Net‐zeroCO
2
emissionsreferstozeroCO
2
emissionstotheatmosphere,orwithany
residualCO
2
emissionsoffsetbyCO
2
removalfromdirectaircaptureorbioenergywithcarboncaptureand
storage.
Chapter 2 | A global pathway to net-zero CO emissions in 2050
49
2
TheNZEaimstoensurethatenergy‐relatedandindustrialprocessCO
2
emissionsto2030are
inlinewithreductionsin1.5°Cscenarioswithnoorloworlimitedtemperatureovershoot
assessedintheIPCCinitsSpecialReportonGlobalWarmingof1.5°C.
2
Inaddition,theNZE
incorporatesconcreteactionontheenergy‐relatedUnitedNationsSustainableDevelopment
Goalsrelatedtoachievinguniversalenergyaccessby2030anddeliveringamajorreduction
inairpollution.TheprojectionsintheNZEweregeneratedbyahybridmodelthatcombines
componentsoftheIEAsWorldEnergyModel(WEM),whichisused to produce the
projectionsintheannualWorld Energy Outlook,andtheEnergyTechnologyPerspectives
(ETP)model.
Box 2.1
International Energy Agency modelling approach for the NZE
Anew,hybridmodellingapproachwasadoptedtodeveloptheNZEandcombinesthe
relativestrengthsoftheWEMandtheETPmodel.TheWEMisalarge‐scalesimulation
modeldesignedtoreplicatehowcompetitiveenergymarketsfunctionandtoexamine
theimplicationsofpoliciesonadetailedsector‐by‐sectorandregion‐by‐regionbasis.The
ETP model is a large‐scale partial‐optimisation model with detailed technology
descriptions of more than 800individual technologies across the energy conversion,
industry,transportandbuildingssectors.
Thisisthefirsttimethismodellingapproachhasbeenimplemented.Thecombinationof
thetwomodelsallowsforauniquesetofinsightsonenergymarkets, investment,
technologies,andthelevelanddetailofpoliciesthatwouldbeneededtobringaboutthe
energysectortransformationintheNZE.
ResultsfromtheWEMandETPmodelhavebeencoupledwiththeGreenhouseGas‐Air
Pollution Interactions and Synergies (GAINS) model developed by IIASA
(Amannetal.,2011).TheGAINSmodelisusedtoevaluateairpollutantemissionsand
resultanthealthimpactslinkedtoairpollution.Forthefirsttime,IEAmodelresultshave
alsobeencoupledwiththeIIASA’sGlobalBiosphereManagementModel(GLOBIOM)to
providedataonlanduseandnetemissionsimpactsofbioenergydemand.
TheimpactsofchangesininvestmentandspendingonglobalGDPintheNZEhavebeen
estimated by the International Monetary Fund (IMF) using the Global Integrated
MonetaryandFiscal(GIMF)model.GIMFisamulti‐countrydynamicstochasticgeneral
equilibrium model used by the IMF for policy and risk analysis (Laxton et al., 2010;
Andersonetal.,2013).IthasbeenusedtoproducetheIMF’sWorldEconomicOutlook
scenarioanalysessince2008.
Therearemanypossiblepathstoachievenet‐zeroCO
2
emissionsgloballyby2050andmany
uncertaintiesthatcouldaffectanyofthem;theNZEisthereforeapath,notthepathtonet‐
zeroemissions.Muchdepends,forexample,onthepaceofinnovationinnewandemerging
 
2
TheIPCCclassifiesscenariosas“noorlimitedtemperatureovershoot”,iftemperaturesexceed1.5°Cbyless
than0.1°Cbutreturntolessthan1.5°Cin2100,andas“higherovershoot”,iftemperaturesexceed1.5°Cby
0.1‐0.4°Cbutreturntolessthan1.5°Cin2100.
IEA. All rights reserved.
50 International Energy Agency | Special Report
technologies, the extent to which citizens are able or willing to change behaviour, the
availability of sustainable bioenergy and the extent and effectiveness of international
collaboration.Weinvestigatesomeofthekeyalternativesanduncertaintieshere and in
Chapter3.TheNet‐ZeroEmissionsby2050Scenarioisbuiltonthefollowingprinciples.
Theuptakeofalltheavailabletechnologiesandemissionsreductionoptionsisdictated
bycosts,technologymaturity,policypreferences,andmarketandcountryconditions.
Allcountriesco‐operatetowardsachievingnet‐zeroemissionsworldwide.Thisinvolves
allcountriesparticipatingineffortstomeetthenetzerogoal,workingtogetherinan
effectiveandmutuallybeneficialway,andrecognisingthedifferentstagesofeconomic
developmentofcountriesandregions,andtheimportanceofensuringajusttransition.
Anorderlytransitionacrosstheenergysector.Thisincludesensuringthesecurityoffuel
and electricity supplies at all times, minimising stranded assets where possible and
aimingtoavoidvolatilityinenergymarkets.
2.2.1 PopulationandGDP
TheenergysectortransformationintheNZEoccursagainstthebackdropoflargeincreases
intheworld’spopulationandeconomy(Figure2.1).In2020,therewerearound7.8billion
peopleintheworld;thisisprojectedtoincreasebyaround750millionby2030andbynearly
2billionpeopleby2050inlinewiththemedianvariantoftheUnitedNationsprojections
(UNDESA,2019).Nearlyallofthepopulationincreaseisinemergingmarketanddeveloping
economies:thepopulationofAfricaaloneincreasesbymorethan1.1billionbetween2020
and2050.
Figure 2.1
World population by region and global GDP in the NZE
IEA.Allrightsreserved.
By 2050, the world’s population expands to 9.7 billion people
and the global economy is more than twice as large as in 2020
Notes:GDP=grossdomesticproductinpurchasingpowerparity;C&SAmerica=CentralandSouthAmerica.
Sources:IEAanalysisbasedonUNDESA(2019);OxfordEconomics(2020);IMF(2020a,2020b).
100
200
300
400
500
2
4
6
8
10
2000 2010 2020 2030 2040 2050
TrillionUSD(2019)
Billionpeople
Restofworld
Eurasia
MiddleEast
NorthAmerica
C&SAmerica
SoutheastAsia
Europe
Africa
India
China
GlobalGDP
(rightaxis)
Chapter 2 | A global pathway to net-zero CO emissions in 2050
51
2
Theworldseconomyisassumedtorecoverrapidlyfromtheimpact of the Covid‐19
pandemic.Itssizereturnstopre‐crisislevelsin2021.From2022,theGDPgrowthtrendis
closetothepre‐pandemicrateofaround3%peryearonaverage,inlinewithassessments
fromtheIMF.Theresponsetothepandemicleadstoalargeincreaseingovernmentdebt,
butresumedgrowth,alongwithlowinterestratesinmanycountries,makethismanageable
inthelongterm.By2030,theworld’seconomyisaround45%largerthanin2020,andby
2050itismorethantwiceaslarge.
2.2.2 EnergyandCO
2
prices
Projectionsoffutureenergypricesareinevitablysubjecttoahighdegreeofuncertainty.In
IEAscenarios,theyaredesignedtomaintainanequilibriumbetweensupplyanddemand.
TherapiddropinoilandnaturalgasdemandintheNZEmeansthatnofossilfuelexploration
isrequiredandnonewoilandnaturalgasfieldsarerequiredbeyondthosethathavealready
beenapprovedfordevelopment.Nonewcoalminesormineextensionsarerequiredeither.
Pricesareincreasinglysetbytheoperatingcostsofthemarginalprojectrequiredtomeet
demand,andthisresultsinsignificantlylowerfossilfuelpricesthaninrecentyears.Theoil
price drops to around USD35/barrel by 2030 and then drifts down slowly towards
USD25/barrelin2050.
Table 2.1 Fossil fuel prices in the NZE
Realterms(USD2019) 2010 2020 2030 2040 2050
IEAcrudeoil(USD/barrel) 91 37 35 28 24
Naturalgas(USD/MBtu)
UnitedStates 5.1 2.1 1.9 2.0 2.0
EuropeanUnion 8.7 2.0 3.8 3.8 3.5
China 7.8 5.7 5.2 4.8 4.6
Japan 12.9 5.7 4.4 4.2 4.1
Steamcoal(USD/tonne)
UnitedStates 60 45 24 24 22
EuropeanUnion 108 56 51 48 43
Japan 125 75 57 53 49
CoastalChina 135 81 60 54 50
Notes:MBtu=millionBritishthermalunits.TheIEAcrudeoilpricesareaweightedaverageimportpriceamong
IEAmembercountries.Naturalgaspricesareweightedaveragesexpressedonagrosscalorific‐valuebasis.US
naturalgaspricesreflectthewholesalepriceprevailingonthedomesticmarket.TheEuropeanUnionand
Chinagaspricesreflectabalanceofpipelineandliquefiednaturalgas(LNG)imports,whileJapangasprices
solelyreflectLNGimports.LNGpricesusedarethoseatthecustomsborder,priortoregasification.Steam
coalpricesareweightedaveragesadjustedto6000kilocaloriesperkilogramme.USsteamcoalpricesreflect
mine‐mouth price plus transport and handling cost. Coastal China steam coal price reflects a balance of
importsanddomesticsales,whiletheEuropeanUnionandJapanesesteamcoalpricesaresolelyforimports.
IEA. All rights reserved.
52 International Energy Agency | Special Report
In line with the principle of orderly transitions governing the NZE, the trajectory for oil
marketsandpricesavoidsexcessivevolatility.Whathappensdependstoalargedegreeon
thestrategiesadoptedbyresource‐richgovernmentsandtheirnationaloilcompanies.Inthe
NZEitisassumedthat,despitehavinglowercostresourcesattheirdisposal,theyrestrict
investmentinnewfields.Thislimitstheneedfortheshuttinginandclosureofhighercost
production.Themarketshareofmajorresource‐richcountriesneverthelessstillrisesinthe
NZEduetothelargesizeandslowdeclineratesoftheirexistingfields.
Producereconomiescouldpursuealternativeapproaches.Facedwithrapidlyfallingoiland
gasdemand,theycould,forexample,opttoincreaseproductionsoastocaptureaneven
largershareofthemarket.Inthisevent,thecombinationoffallingdemandandincreased
availabilityoflowcostoilwouldundoubtedlyleadtoevenlower–andprobablymuchmore
volatile–prices.Inpractice,theoptionsopentoparticularproducercountrieswoulddepend
ontheirresiliencetoloweroilpricesandontheextenttowhichexportmarketshave
developedforlow‐emissionsfuelsthatcouldbeproducedfromtheirnaturalresources.
Anticipating and mitigating feedbacks from the supply side is acentralelementofthe
discussionaboutorderlyenergytransitions.Adropinpricesusuallyresultsinsomerebound
in demand, and policies and regulations would be essential to avoid this leading to any
increase in the unabated use of fossil fuels, which would underminewideremissions
reductionefforts.
Astheenergysectortransforms,morefuelsaretradedglobally, such ashydrogen‐based
fuelsandbiofuels.Thepricesofthesecommoditiesareassumedtobesetbythemarginal
costofdomesticproductionorimportswithineachregion.
A broad range of energy policies and accompanying measures are introduced across all
regionstoreduceemissionsintheNZE.Thisincludes:renewablefuelmandates;efficiency
standards;marketreforms;research,developmentanddeployment;andtheeliminationof
inefficient fossil fuel subsidies. Direct emissionsreduction regulationsarealsoneededin
somecases.Inthetransportsector,forexample,regulationsareimplementedtoreduce
sales of internal combustion engine vehicles and increase the use of liquid biofuels and
syntheticfuelsinaviationandshipping,aswellasmeasurestoensurethatlowoilpricesdo
notleadtoanincreaseinconsumption.
CO
2
pricesareintroducedacrossallregionsintheNZE(Table2.2).Theyareassumedtobe
introduced in the immediate future across all advanced economies for the electricity
generation,industryandenergyproductionsectors,andtoriseonaveragetoUSD130per
tonne(tCO
2
)by2030andtoUSD250/tCO
2
by2050.Inanumberofothermajoreconomies
–includingChina,Brazil,RussiaandSouthAfrica–CO
2
pricesinthesesectorsareassumed
to rise to around USD200/tCO
2
in 2050. CO
2
prices are introduced in all other emerging
market and developing economies, although it is assumed that they pursue more direct
policiestoadaptandtransformtheirenergysystemsandsothelevelofCO
2
pricesislower
thanelsewhere.
Chapter 2 | A global pathway to net-zero CO emissions in 2050
53
2
Table 2.2 CO
2
prices for electricity, industry and energy production in the NZE
USD(2019)pertonneofCO
2
2025 2030 2040 2050
Advancedeconomies 75 130 205 250
Selectedemergingmarketand
developingeconomies*
45 90 160 200
Otheremergingmarketand
developingeconomies
3 15 35 55
*IncludesChina,Russia,BrazilandSouthAfrica.
2.3 CO
2
emissions
Global energy‐related and industrial process CO
2
emissionsintheNZEfalltoaround
21GtCO
2
in2030andtonet‐zeroin2050(Figure2.2).
3
CO
2
emissionsinadvancedeconomies
asawholefalltonetzerobyaround2045andthesecountriescollectivelyremovearound
0.2GtCO
2
fromtheatmospherein2050.Emissionsinseveralindividualemergingmarket
anddevelopingeconomiesalsofalltonetzerowellbefore2050,butinaggregatethereare
around0.2GtCO
2
ofremainingemissionsinthisgroupofcountriesin2050.Theseareoffset
byCO
2
removalinadvancedeconomiestoprovidenet‐zeroCO
2
emissionsatthegloballevel.
Figure 2.2
Global net CO
2
emissions in the NZE
IEA.Allrightsreserved.
CO
2
emissions fall to net zero in advanced economies around 2045 and globally by 2050.
Per capita emissions globally are similar by the early-2040s.
Note:IncludesCO
2
emissionsfrominternationalaviationandshipping.
 
3
Intheperiodto2030,CO
2
emissionsintheNZEfallatabroadlysimilarratetotheP2illustrativepathwayin
theIPCCSR1.5(IPCC,2018).TheP2scenarioisdescribedas“ascenariowith…shiftstowardssustainableand
healthy consumption patterns, lowcarbon technology innovation, and well‐managed land systems with
limitedsocietalacceptabilityforBECCS[bioenergywithcarboncaptureandstorage]”.After2030,emissions
intheNZEfallatamuchfasterpacethanintheP2scenario,whichhas5.6GtCO
2
ofresidualenergysector
andindustrialprocessCO
2
emissionsremainingin2050.
‐10
0
10
20
30
40
2010 2020 2030 2040 2050
GtCO₂
Advancedeconomies Emergingmarketanddevelopingeconomies
CO₂emissions
‐3
0
3
6
9
12
2010 2020 2030 2040 2050
tCO₂percapita
PercapitaCO₂emissions
IEA. All rights reserved.
54 International Energy Agency | Special Report
Severalemergingmarketanddevelopingeconomieswithaverylargepotentialforproducing
renewables‐basedelectricityandbioenergyarealsoakeysourceofcarbondioxideremoval
(CDR).Thisincludesmakinguseofrenewableelectricitysourcestoproducelargequantities
ofbiofuelswithCCUS,someofwhichisexported,andtocarryoutdirectaircapturewith
carboncaptureandstorage(DACCS).
PercapitaCO
2
emissionsinadvancedeconomiesdropfromaround8tCO
2
perpersonin2020
toaround3.5tCO
2
in2030,alevelclosetotheaverageinemergingmarketanddeveloping
economies in 2020. Per capita emissions also fall in emerging market and developing
economies,butfromamuchlowerstartingpoint.Bytheearly2040s,percapitaemissionsin
bothregionsarebroadlysimilarataround0.5tCO
2
perperson.
Cumulativeglobalenergy‐relatedandindustrialprocessCO
2
emissionsbetween2020and
2050 amount to just over 460Gt in the NZE. Assuming parallel action to address CO
2
emissionsfrom agriculture,forestryandother land use(AFOLU) over theperiod to 2050
wouldresultinaround40GtCO
2
fromAFOLU(seesection2.7.2).ThismeansthattotalCO
2
emissionsfromallsources–some500GtCO
2
–areinlinewiththeCO
2
budgetsincludedin
the IPCC SR1.5, which indicated that the total CO
2
budget from 2020 consistent with
providinga50%chanceoflimitingwarmingto1.5°Cis500GtCO
2
(IPCC,2018)
.
4
Aswellas
reducingCO
2
emissionstonet‐zero,theNZEseekstoreducenon‐CO
2
emissionsfromthe
energysector.Methaneemissionsfromfossilfuelproductionanduse,forexample,fallfrom
115milliontonnes(Mt)methanein2020(3.5GtCO
2
‐equivalent[CO
2
‐eq])
5
to30Mtin2030
and10Mtin2050.
The fastest and largest reductions in global emissions in the NZEareinitiallyseeninthe
electricitysector(Figure2.3).Electricitygenerationwasthelargestsourceofemissionsin
2020,butemissionsdropbynearly60%intheperiodto2030,mainlyduetomajorreductions
fromcoal‐firedpowerplants,andtheelectricitysectorbecomesasmallnetnegativesource
ofemissionsaround2040.Emissionsfromthebuildingssectorfallby40%between2020and
2030thankstoashiftawayfromtheuseoffossilfuelboilers,andretrofittingtheexisting
buildingstock toimproveitsenergy performance. Emissionsfrom industry andtransport
bothfallbyaround20%overthisperiod,andtheirpaceofemissionsreductionsaccelerates
duringthe2030sastheroll‐outoflow‐emissionsfuelsandotheremissionsreductionoptions
isscaledup.Nonetheless,thereareanumberofareasintransportandindustryinwhichit
isdifficulttoeliminateemissionsentirely–suchasaviationandheavyindustry–andboth
sectorshaveasmalllevelofresidualemissionsin2050.Theseresidualemissionsareoffset
withapplicationsofBECCSandDACCS.
 
4
ThisbudgetisbasedonTable2.2oftheIPCCSR1.5(IPCC,2018).Itassumes0.53°Cadditionalwarmingfrom
the2006‐2015periodtogivearemainingCO
2
budgetfrom2018of580GtCO
2
.Therewerearound80GtCO
2
emissionsemittedfrom2018to2020.
5
Non‐CO
2
gasesareconvertedtoCO
2
‐equivalentsbasedonthe100‐yearglobalwarmingpotentialsreported
bytheIPCC5thAssessmentReport(IPCC,2014).Onetonneofmethaneisequivalentto30tonnesofCO
2
.
Chapter 2 | A global pathway to net-zero CO emissions in 2050
55
2
Figure 2.3 Global net-CO
2
emissions by sector, and gross and
net CO
2
emissions in the NZE
IEA.Allrightsreserved.
Emissions from electricity fall fastest, with declines in industry and transport accelerating
in the 2030s. Around 1.9 Gt CO
2
are removed in 2050 via BECCS and DACCS.
Notes: Other=agriculture, fuel production, transformation and related process emissions, and direct air
capture.BECCS=bioenergywithcarboncaptureandstorage;DACCS=directaircapturewithcarboncapture
andstorage.BECCSandDACCSincludesCO
2
emissionscapturedandpermanentlystored.
The NZE includes a systematic preference for all new assets and infrastructure to be as
sustainableandefficientaspossible,andthisaccountsfor50%oftotalemissionsreductions
in 2050. Tackling emissions from existing infrastructure accountsforanother35%of
reductions in 2050, while behavioural changes and avoided demand, including materials
efficiency
6
gains and modal shifts in the transport sector, provide the remaining 15% of
emissionsreductions (see section2.5.2). A wide range oftechnologies and measuresare
deployedintheNZEtoreduceemissionsfromexistinginfrastructuresuchaspowerplants,
industrialfacilities,buildings,networks,equipmentandappliances.TheNZEisdesignedto
minimise stranded capital where possible, i.e. cases where the initial investment is not
recouped,butinmanycasesearlyretirementsorlowerutilisationleadtostrandedvalue,i.e.
areductioninrevenue.
Therapiddeploymentofmoreenergy‐efficienttechnologies,electrificationofend‐usesand
swiftgrowthofrenewablesallplayacentralpartinreducingemissionsacrossallsectorsin
theNZE(Figure2.4).By2050,nearly90%ofallelectricitygenerationisfromrenewables,as
isaround25%ofnon‐electricenergyuseinindustryandbuildings.Thereisalsoamajorrole
foremergingfuelsandtechnologies,notablyhydrogenandhydrogen‐basedfuels,bioenergy
andCCUS,especiallyinsectorswhereemissionsareoftenmostchallengingtoreduce.
 
6
Materialsefficiencyincludesstrategiesthatreducematerialdemand,orshifttotheuseofloweremissions
materialsorloweremissionsproductionroutes.Examplesincludelightweightingandrecycling.
‐5
0
5
10
15
2010 2020 2030 2040 2050
GtCO₂
Electricity
Buildings
Transport
Industry
Other
Sector
‐10
0
10
20
30
40
2010 2020 2030 2040 2050
GrossCO₂
emissions
BECCSand
DACCS
NetCO₂
emissions
GrossandnetCO₂emissions
IEA. All rights reserved.
56 International Energy Agency | Special Report
Figure 2.4 Average annual CO
2
reductions from 2020 in the NZE
IEA.Allrightsreserved.
Renewables and electrification make the largest contribution to emissions reductions, but a
wide range of measures and technologies are needed to achieve net-zero emissions
Notes: Activity = changes in energy service demand from economic and population growth.
Behaviour=change in energy service demand from user decisions, e.g. changing heating temperatures.
Avoideddemand=changeinenergyservicedemandfromtechnologydevelopments,e.g.digitalisation.
2.4 Totalenergysupplyandfinalenergyconsumption
2.4.1 Totalenergysupply
7
Totalenergysupplyfallsto550exajoules(EJ)in2030,7%lowerthanin2020(Figure2.5).
Thisoccursdespitesignificantincreasesintheglobalpopulationandeconomybecauseofa
fall in energy intensity (the amount of energy used to generateaunitofGDP).Energy
intensityfallsby4%onaverageeachyearbetween2020and2030.Thisisachievedthrough
a combination of electrification, a push to pursue all energy and materials efficiency
opportunities,behaviouralchangesthatreducedemandfor energy services, and a major
shift away from the traditional use of bioenergy.
8
Thislevelofimprovementinenergy
intensityismuchgreaterthanhasbeenachievedinrecentyears:between2010and2020,
averageannualenergyintensityfellbylessthen2%eachyear.
After 2030, continuing electrification of end‐use sectors helpsto reduce energy intensity
further,buttheemphasisonmaximisingenergyefficiencyimprovementsintheyearsupto
 
7
Thetermstotalprimaryenergysupply(TPES)ortotalprimaryenergydemand(TPED)havebeenrenamedas
total energy supply (TES) in accordance with the International Recommendations for Energy Statistics
(IEA,2020a).
8
Modernformsofcookingrequiremuchlessenergythanthetraditionaluseofbiomassininefficientstoves.
Forexample,cookingwithaliquefiedpetroleumgasstoveusesaround five‐times less energy than the
traditionaluseofbiomass.
‐60
‐40
‐20
0
20
2021‐25 2026‐30 2031‐35 2036‐40 2041‐45 2046‐50
GtCO
2
Activity
Behaviourandavoideddemand
Energysupplyefficiency
Buildingsefficiency
Industryefficiency
Transportefficiency
Electricvehicles
Otherelectrification
Hydrogen
Windandsolar
Transportbiofuels
Otherrenewables
Otherpower
CCUSindustry
CCUSpowerandfuelsupply
Netemissionsreduction
Chapter 2 | A global pathway to net-zero CO emissions in 2050
57
2
2030limitstheavailableopportunitiesinlateryears.Atthesametime,increasingproduction
of new fuels, such as advanced biofuels,hydrogen and synthetic fuels, tends to push up
energyuse.Asaresult,therateofdeclineinenergyintensitybetween2030and2050slows
to2.7%peryear.Withcontinuedeconomicandpopulationgrowth,thismeansthattotal
energysupplyfallsslightlybetween2030and2040butthenremainsbroadlyflatto2050.
Totalenergysupplyin2050intheNZEisclosetothelevelin2010,despiteaglobalpopulation
thatisnearly3billionpeoplehigherandaglobaleconomythatisoverthree‐timeslarger.
Figure 2.5
Total energy supply in the NZE
IEA.Allrightsreserved.
Renewables and nuclear power displace most fossil fuel use in the NZE,
and the share of fossil fuels falls from 80% in 2020 to just over 20% in 2050
Theenergymixin2050intheNZEismuchmorediversethantoday.In2020,oilprovided
30%oftotalenergysupply,whilecoalsupplied26%andnaturalgas23%.In2050,renewables
providetwo‐thirdsofenergyuse,splitbetweenbioenergy,wind,solar,hydroelectricityand
geothermal(Figure2.6).Thereisalsoalargeincreaseinenergysupplyfromnuclearpower,
whichnearlydoublesbetween2020and2050.
TherearelargereductionsintheuseoffossilfuelsintheNZE.Asashareoftotalenergy
supply,theyfallfrom80%in2020tojustover20%in2050.However,theirusedoesnotfall
tozeroin2050:significantamountsarestillusedinproducingnon‐energygoods,inplants
withCCUS,andinsectorswhereemissions are especially hard to abate such as heavy
industryandlong‐distancetransport.Allremainingemissionsin2050areoffsetbynegative
emissionselsewhere(Box2.2).Coal use falls from5250million tonnes of coalequivalent
(Mtce)in2020to2500Mtcein2030andtolessthan600Mtcein2050–anaverageannual
declineof7%eachyearfrom2020to2050.Oildemanddroppedbelow90millionbarrels
perday(mb/d)in2020anddemanddoesnotreturntoits2019peak:itfallsto72mb/din
2030and24mb/din2050–anannualaveragedeclineofmorethan4%from2020to2050.
Naturalgasusedroppedto3900billioncubicmetres(bcm)in2020,butexceedsitsprevious
100
200
300
400
500
600
2000 2010 2020 2030 2040 2050
EJ
Other
Otherrenewables
Wind
Solar
Hydro
Traditionaluseofbiomass
Moderngaseousbioenergy
Modernliquidbioenergy
Modernsolidbioenergy
Nuclear
Naturalgas
Oil
Coal
IEA. All rights reserved.
58 International Energy Agency | Special Report
2019peakinthemid‐2020sbeforestartingtodeclineasitisphasedoutintheelectricity
sector.Naturalgasusedeclinesto3700bcmin2030and1750bcmin2050–anannual
averagedeclineofjustunder3%from2020to2050.
Figure 2.6
Total energy supply of unabated fossil fuels and low-emissions
energy sources in the NZE
IEA.Allrightsreserved.
Some fossil fuels are still used in 2050 in the production of non-energy goods,
in plants equipped with CCUS, and in sectors where emissions are hard to abate
Note:Low‐emissionsincludestheuseoffossilfuelswithCCUSandinnon‐energyuses.
Box 2.2 Why does fossil fuel use not fall to zero in 2050 in the NZE?
Intotal,around120EJoffossilfuelsisconsumedin2050intheNZErelativeto460EJin
2020.Threemainreasonsunderliewhyfossilfuelusedoesnotfalltozeroin2050,even
thoughtheenergysectoremitsnoCO
2
onanetbasis:
Usefornon‐energypurposes.Morethan30%oftotalfossilfuelusein2050inthe
NZE–including70%ofoiluse–isinapplicationswherethefuelsarenotcombusted
andsodonotresultinanydirectCO
2
emissions(Figure2.7).Examplesincludeuse
as chemical feedstocks and in lubricants, paraffin waxes and asphalt. There are
majoreffortstolimitfossilfueluseintheseapplicationsintheNZE,forinstance
globalplasticcollectionratesforrecyclingrisingfrom15%in2020to55%in2050,
butfossilfueluseinnon‐energyapplicationsstillrisesslightlyto2050.
UsewithCCUS.Aroundhalfoffossilfuelusein2050isinplantsequippedwithCCUS
(around 3.5GtCO
2
emissions are captured from fossil fuels in 2050). Around
925bcm of natural gas is converted to hydrogen with CCUS. In addition, around
470Mtceofcoaland225bcmofnaturalgasareusedwithCCUSintheelectricity
andindustrialsectors,mainlytoextendtheoperationsofyoungfacilitiesandreduce
strandedassets.
100
200
300
400
500
600
2010 2020 2030 2040 2050 2010 2020 2030 2040 2050
EJ
Other
renewables
Solar
Wind
Traditional
useofbiomass
Modern
bioenergy
Hydro
Nuclear
Naturalgas
Oil
Coal
Unabatedfossilfuels Low‐emissions
Chapter 2 | A global pathway to net-zero CO emissions in 2050
59
2
Useinsectorswheretechnologyoptionsarescarce.Theremaining20%offossil
fuelusein2050intheNZEisinsectorswherethecompleteeliminationofemissions
is particularly challenging. Mostly this is oil, as it continues to fuel aviation in
particular.Asmallamountofunabatedcoalandnaturalgasareusedinindustryand
in the production of energy. The unabated use of fossil fuel results in around
1.7GtCO
2
emissionsin2050,whicharefullyoffsetbyBECCSandDACCS.
Figure 2.7 Fossil fuel use and share by sector in 2050 in the NZE
IEA.Allrightsreserved.
More than 30% of fossil fuel use in 2050 is not combusted and so does
not result in direct CO
2
emissions, around 50% is paired with CCUS
Notes: Non‐combustion includes use for non‐emitting, non‐energy purposes such as petrochemical
feedstocks,lubricantsandasphalt.Energyproductionincludesfuelusefordirectaircapture.
Solid,liquidandgaseousfuelscontinuetoplayanimportantroleintheNZE,whichseeslarge
increasesinbioenergyandhydrogen(Figure2.8).Around40%ofbioenergyusedtodayisfor
thetraditionaluseofbiomassincooking:thisisrapidlyphasedoutintheNZE.Modernforms
ofsolidbiomass,whichcanbeusedtoreduceemissionsinboththeelectricityandindustry
sectors,risefrom32EJin2020to55EJin2030and75EJin2050,offsettingalargeportion
ofadropincoaldemand.Theuseoflow‐emissionsliquidfuels,suchasammonia,synthetic
fuelsandliquidbiofuels,increasesfrom3.5EJ(1.6millionbarrelsofoilequivalentperday
[mboe/d])in2020tojustabove25EJ(12.5mboe/d)in2050.Thesupplyoflow‐emissions
gases,suchashydrogen,syntheticmethane,biogasandbiomethanerisesfrom2EJin2020
to17EJin2030and50EJin2050.Theincreaseingaseoushydrogenproductionbetween
2020 and 2030 in the NZE is twice as fast as the fastest ten‐yearincreaseinshalegas
productionintheUnitedStates.
20%
40%
60%
80%
100%
10
20
30
40
50
Non‐
combustion
Energy
production
Industry
Power
Transport
Buildings
EJ
withCCUS
withoutCCUS
withCCUS
withoutCCUS
withCCUS
withoutCCUS
Shareofsector
Coal
Naturalgas
Oil
total(rightaxis)
IEA. All rights reserved.
60 International Energy Agency | Special Report
Figure 2.8 Solid, liquid and gaseous fuels in the NZE
IEA.Allrightsreserved.
Increases in low-emissions solids, liquids and gases from bioenergy, hydrogen and
hydrogen-based fuels offset some of the declines in coal, oil and natural gas
Notes: Hydrogen conversion losses = consumption of natural gas when producing low‐carbon merchant
hydrogenusingsteammethanereforming.Hydrogen‐basedincludeshydrogen,ammoniaandsyntheticfuels.
2.4.2 Totalfinalconsumption
Totalfinalconsumptionworldwidereboundsmarginallyfollowingits5%dropin2020,butit
neverreturnsto2019levelsintheNZE(435EJ).Itfallsbyjustunder1%eachyearonaverage
between2025and2050to340EJ.Energyefficiencymeasuresandelectrificationarethetwo
maincontributingfactors,withbehaviouralchangesandmaterialsefficiencyalsoplayinga
role. Without these improvements, final energy consumption in 2050 would be around
640EJ, around 90% higher than the level in the NZE. Final consumption of electricity
increasesby25%from2020to2030,andby2050itismorethandoublethelevelin2020.
Theincreaseinelectricityconsumptionfromend‐usessectorsandfromhydrogenproduction
meansthatoverallannualelectricitydemandgrowthisequivalenttoaddinganelectricity
marketthesizeofIndiaeveryyearintheNZE.Theshareofelectricityinglobalfinalenergy
consumptionjumpsfrom20%in2020to26%in2030andtoaround50%in2050(Figure2.9).
Thedirectuseofrenewablesinbuildingsandindustrytogetherwithlow‐emissionsfuelssuch
asbioenergyandhydrogenbasedfuelsprovideafurther28%offinalenergyconsumption
in 2050; fossil fuels comprise the remainder, most of which are used in non‐emitting
processesorinfacilitiesequippedwithCCUS.
Inindustry,mostoftheglobalemissionsreductionsintheNZEduringtheperiodto2030are
deliveredthroughenergyandmaterialsefficiencyimprovements,electrificationofheat,and
fuelswitchingtosolarthermal,geothermalandbioenergy.Thereafter,CCUSandhydrogen
playanincreasinglyimportantroleinreducingCO
2
emissions,especiallyinheavyindustries
suchassteel,cementandchemicals.Electricityconsumptioninindustrymorethandoubles
between2020and2050,providing45%oftotalindustrialenergyneedsin2050(Figure2.10).
50
100
150
200
2000
2010
2020
2030
2040
2050
2000
2010
2020
2030
2040
2050
2000
2010
2020
2030
2040
2050
EJ
Coal Oil Naturalgas Hydrogenconversion
Traditionalbiomass Modernbioenergy Hydrogen‐based
Solids Liquids Gases
losses
Chapter 2 | A global pathway to net-zero CO emissions in 2050
61
2
The demand for merchant hydrogen in industry increases from less than 1Mt today to
around40Mtin2050.Afurther10%ofindustrialenergydemandin2050ismetbyfossil
fuelsusedinplantsequippedwithCCUS.
Figure 2.9
Global total final consumption by fuel in the NZE
IEA.Allrightsreserved.
The share of electricity in final energy use jumps from 20% in 2020 to 50% in 2050
Note:Hydrogen‐basedincludeshydrogen,ammoniaandsyntheticfuels.
Intransport,thereisarapidtransitionawayfromoilworldwide,whichprovidedmorethan
90%offuelusein2020.Inroadtransport,electricitycomestodominatethesector,providing
more than 60% of energy use in 2050, while hydrogen and hydrogen‐based fuels play a
smallerrole, mainlyinfuelling long‐haulheavy‐dutytrucks.In shipping, energyefficiency
improvements significantly reduce energy needs (especially up to 2030), while advanced
biofuelsandhydrogen‐basedfuels,suchasammonia,increasinglydisplaceoil.Inaviation,
theuseofsyntheticliquidsand advanced biofuels growsrapidly,and their share of total
energydemandrisesfromalmostzerotodaytoalmost80%in2050. Overall, electricity
becomes the dominant fuel in the transport sector globally by the early 2040s, and it
accountsforaround45%ofenergyconsumptioninthesectorin2050(comparedwith1.5%
in 2020). Hydrogen and hydrogen‐based fuels account for nearly 30% of consumption
(almostzeroin2020)andbioenergyforafurther15%(around4%in2020).
Inbuildings,theelectrificationofend‐usesincludingheatingleadstodemandforelectricity
increasingbyaround35%between2020and2050:itbecomesthedominantfuel,reaching
16000terawatt‐hours(TWh)in2050,andaccountingfortwo‐thirdsoftotalbuildingssector
energyconsumption.By2050,two‐thirdsofresidentialbuildingsinadvancedeconomiesand
around40%ofresidentialbuildingsinemergingmarketanddevelopingeconomiesarefitted
withaheatpump.Onsiterenewables‐basedenergysystemssuchassolarwaterheatersand
biomassboilersprovideafurtherquarteroffinalenergyuseinthebuildingssectorin2050
(upfrom6%in2020).Low‐emissionsdistrictheatingandhydrogenprovideonly7%ofenergy
use,butplayasignificantroleinsomeregions.
50 100 150 200 250 300 350
2010
2020
2030
2040
2050
2010
2020
2030
2040
2050
EJ
Oil
Naturalgas
Coal
Heat
Modernbioenergy
Traditionaluse
ofbiomass
Hydrogen‐based
Otherrenewables
Fossilfuelsunabated
FossilfuelswithCCUS
Hydrogen‐based
Nuclear
SolarPVandwind
Hydro
Otherrenewables
Fuelsandother
Electricityuse
FuelsandotherElectricityuse
IEA. All rights reserved.
62 International Energy Agency | Special Report
Figure 2.10 Global final energy consumption by sector and fuel in the NZE
IEA.Allrightsreserved.
There is a wholesale shift away from unabated fossil fuel use to electricity, renewables,
hydrogen and hydrogen-based fuels, modern bioenergy and CCUS in end-use sectors
Note:Hydrogen‐basedincludeshydrogen,ammoniaandsyntheticfuels.
Buildingsenergyconsumptionfallsby25%between2020and2030,largelyasaresultofa
majorpushtoimproveefficiencyandtophaseoutthetraditionaluseofsolidbiomassfor
cooking: it is replaced by liquefiedpetroleumgas(LPG),biogas, electric cookers and
improvedbioenergystoves.Universalaccesstoelectricityisachievedby2030,andthisadds
lessthan1%toglobalelectricitydemandin2030.Energyconsumptioninthebuildingssector
contractsbyaround15%between2030and2050givencontinuedefficiencyimprovements
and electrification. By 2050, energy use in buildings is 35% lower than in 2020. Energy
efficiency measures – including improving building envelopes and ensuring that all new
appliancesbroughttomarketarethemostefficientmodelsavailable–playakeyrolein
limiting the rise in electricity demand in the NZE. Without these measures, electricity
demandinbuildingswouldbearound10000TWhhigherin2050,oraround70%higherthan
thelevelintheNZE.
How does the NZE compare with similar 1.5 °C scenarios
assessed by the IPCC?
TheIPCCSR1.5includes90individualscenariosthathaveatleasta50%chanceoflimiting
warmingin2100to1.5°C(IPCC,2018).
9
Only18ofthesescenarioshavenet‐zeroCO
2
energysectorandindustrialprocessemissionsin2050.Inotherwords,onlyone‐in‐five
ofthe1.5°CscenariosassessedbytheIPCChavethesamelevelofemissionsreduction
 
9
Includes53scenarioswithnoorlimitedtemperatureovershootand37scenarioswithahighertemperature
overshoot.
40
80
120
160
200
2010
2020
2030
2040
2050
2010
2020
2030
2040
2050
2010
2020
2030
2040
2050
EJ
Other
Hydrogen‐based
Otherrenewables
Modernbioenergy
Traditionaluse
ofbiomass
Electricity
FossilfuelswithCCUS
Unabatedfossilfuels
Industry Transport Buildings
SPOTLIGHT
Chapter 2 | A global pathway to net-zero CO emissions in 2050
63
2
ambition for the energy and industrial process sectors to 2050 as the NZE.
10
Some
comparisonsbetweenthese18scenariosandtheNZEin2050(Figure2.11):
Figure 2.11 Comparison of selected indicators of the IPCC scenarios and
the NZE in 2050
IEA.Allrightsreserved.
The NZE has the lowest level of energy-related CDR and bioenergy of any scenario that
achieves net-zero energy sector and industrial process CO
2
emissions in 2050
Notes:CCUS=carboncapture,utilisationandstorage;CDR=carbondirectremoval;TES=totalenergy
supply;TFC=totalfinalconsumption.Energy‐relatedCDRincludesCO
2
capturedthroughbioenergywith
CCUSanddirectaircapturewithCCUSandputintopermanentstorage.Windandsolarsharearegiven
asapercentageoftotalelectricitygeneration.Only17ofthe18scenariosassessedbytheIPCCreport
hydrogenuseinTFC.
UseofCCUS.ThescenariosassessedbytheIPCChaveamedianofaround15GtCO
2
capturedusingCCUSin2050,morethandoublethelevelintheNZE.
UseofCDR.CO
2
emissionscapturedandstoredfromBECCSandDACCSintheIPCC
scenariosrangefrom3.5‐16GtCO
2
in2050,comparedwith1.9GtCO
2
intheNZE.
10
Thelow‐energydemandscenariohasaround4.5GtCO
2
energysectorandindustrialprocessemissionsin
2050andisnotincludedinthiscomparison.
10
20
30
40
EJ
HydrogeninTFC
25%
50%
75%
100%
Windandsolarshar
e
80
160
240
320
EJ
BioenergyTES
5
10
15
20
GtCO
2
CCUS
5
10
15
20
GtCO₂
Energy‐relatedCDR
150
300
450
600
EJ
ScenariosassessedbyIPCC NZE
TFC
IEA. All rights reserved.
64 International Energy Agency | Special Report
Bioenergy.TheIPCCscenariosuseamedianof200EJofprimarybioenergyin2050
(comparedwith 63 EJ today) andanumberusemore than 300 EJ. TheNZEuses
100EJofprimarybioenergyin2050.
Energy efficiency. Total final consumption in the IPCC scenarios range from
300‐550EJin2050(comparedwitharound410EJin2020).TheNZEhasfinalenergy
consumptionof340EJin2050.
Hydrogen.TheIPCCscenarioshaveamedianof18EJhydrogenintotalfinal
consumptionin2050,comparedwith33EJintheNZE.
11
Electricitygeneration.Thesharesofwindandsolarintotalelectricitygenerationin
2050intheIPCCscenariosrangefromaround15‐80%withamedianvalueof50%.
IntheNZE,windandsolarprovide70%oftotalgenerationin2050.
2.5 Keypillarsofdecarbonisation
AchievingtherapidreductioninCO
2
emissionsoverthenext30yearsintheNZErequiresa
broad range of policy approaches and technologies (Figure2.12). The key pillars of
decarbonisation of the global energy system are energy efficiency, behavioural changes,
electrification,renewables,hydrogenandhydrogen‐basedfuels,bioenergyandCCUS.
Figure 2.12
Emissions reductions by mitigation measure in the NZE, 2020-2050
IEA.Allrightsreserved.
Solar, wind and energy efficiency deliver around half of emissions reductions to 2030
in the NZE, while electrification, CCUS and hydrogen ramp up thereafter
Notes:Activity=energyservicedemandchangesfromeconomicandpopulationgrowth.Behaviour=energy
servicedemandchangesfromuserdecisions,e.g.changingheatingtemperatures.Avoideddemand=energy
servicedemandchangesfromtechnologydevelopments,e.g.digitalisation.Otherfuelshifts=switchingfrom
coalandoiltonaturalgas,nuclear,hydropower,geothermal,concentratingsolarpowerormarine.
11
TheNZEvalueforhydrogenincludesthetotalenergycontentof hydrogen and hydrogen‐based fuels
consumedinfinalenergyconsumption.
15
30
45
2020 2030 2050
GtCO₂
Activity
Behaviourand
avoideddemand
Energyefficiency
Hydrogen‐based
Electrification
Bioenergy
Windandsolar
Otherfuelshifts
CCUS
+24%
‐50%
+51%
‐100%
Mitigationmeasures
Measures
Measures
Chapter 2 | A global pathway to net-zero CO emissions in 2050
65
2
2.5.1 Energyefficiency
Minimising energy demand growth through improvements in energy efficiency makes a
criticalcontributionintheNZE.Manyefficiencymeasuresinindustry,buildings,appliances
andtransportcanbeputintoeffectandscaledupveryquickly.Asaresult,energyefficiency
measures are front‐loaded in the NZE, and they play their largestroleincurbingenergy
demandandemissionsintheperiodto2030.Althoughenergyefficiencyimprovesfurther
after2030,itscontributiontooverallemissionsreductionsfallsasothermitigationmeasures
play an expanding role. Without the energy efficiency, behavioural changes and
electrificationmeasuresdeployedintheNZE,finalenergy consumptionwouldbearound
300EJhigherin2050,almost90%abovethe2050levelintheNZE(Figure2.13).Efficiency
improvementsalsohelpreducethevulnerabilityofbusinessesandconsumerstopotential
disruptionstoelectricitysupplies.
Figure 2.13
Total final consumption and demand avoided by mitigation
measure in the NZE
IEA.Allrightsreserved.
Energy efficiency plays a key role in reducing energy consumption across end-use sectors
Notes:Otherfuelswitchincludesswitchingtohydrogen‐relatedfuels,bioenergy,solarthermal,geothermal,
ordistrictheat.
Inthebuildingssector,manyefficiencymeasuresyieldfinancialsavingsaswellasreducing
energy use and emissions. In the NZE, there are immediate and rapid improvements in
energyefficiencyinbuildings,mainlyfromlarge‐scaleretrofitprogrammes.Around2.5%of
existingresidentialbuildingsinadvancedeconomiesareretrofittedeachyearto2050inthe
NZEtocomplywithzero‐carbon‐readybuildingstandards
12
(comparedwithacurrentretrofit
rateoflessthan1%).Inemergingmarketanddevelopingeconomies,buildingreplacement
12
Azero‐carbon‐readybuildingishighlyenergyefficientanduseseitherrenewableenergydirectlyorfroman
energysupplythatwillbefullydecarbonisedby2050intheNZE(suchaselectricityordistrictheat).Azero‐
carbon‐readybuildingwillbecomeazero‐carbonbuildingby2050,withoutfurtherchangestothebuildingor
itsequipment(seeChapter3).
100
200
300
2020 2030 2050 2020 2030 2050 2020 2030 2050
EJ
NZEdemand Electricity Otherfuelswitch Efficiency Behaviour
Industry Buildings Transport
Avoideddueto:
IEA. All rights reserved.
66 International Energy Agency | Special Report
ratesarehigherandtheannualrateofretrofitsisaround2%throughto2050.By2050,the
vast majority of existing residential buildings are retrofitted to be zero‐carbon buildings.
Energy‐relatedbuildingcodesareintroducedinallregionsby2030toensurethatvirtually
all new buildings constructed are zero‐carbon‐ready. Minimum energy performance
standards and replacement schemes for low‐efficiency appliancesareintroducedor
strengthenedinthe2020sinallcountries.Bythemid‐2030s,nearlyallhouseholdappliances
soldworldwideareasefficientasthemostefficientmodelsavailabletoday.
Inthetransportsector,stringentfueleconomystandardsandensuringnonew
passengercarsrunningoninternalcombustionengines(ICEs)aresoldgloballyfrom2035
resultinarapidshiftinvehiclesalestowardmuchmoreefficientelectricvehicles(EVs).
13
The
impactonefficiencyisseeninthe2030s,asthecompositionofthevehiclestockchanges:
electriccarsmakeup20%ofallcarsontheroadin2030and60%in2040(comparedwith
1%today).Continuousimprovementsinthefueleconomyofheavyroadvehiclestakeplace
throughto2050astheyswitchtoelectricityorfuelcells,whileefficiencyinshippingand
aviationimprovesasmoreefficientplanesandshipsreplaceexistingstock.
Intheindustrysector,mostmanufacturingstockisalreadyquiteefficient,buttherearestill
opportunities for energy efficiency improvements. Energy management systems,
best‐in‐classindustrialequipmentsuchaselectricmotors,variablespeeddrives,heatersand
grinders are installed, and process integration options such aswasteheatrecoveryare
exploitedtotheirmaximumeconomicpotentialsintheperiodto2030intheNZE.After2030,
therateofefficiencyimprovementslowsbecausemanyofthetechnologies needed to
reduce emissions in industry in the NZE require more energy than their equivalent
conventionaltechnologies.TheuseofCCUS,forexample,increasesenergyconsumptionto
operate the capture equipment, and producing electrolytic hydrogen on‐site requires
additionalenergythanthatneededforthemainmanufacturingprocess.
Table 2.3
Key global milestones for energy efficiency in the NZE
Sector 2020 2030 2050
Totalenergysupply 2010‐20 2020‐30 2030‐50
Annualenergyintensityimprovement(MJperUSDGDP) ‐1.6% ‐4.2% ‐2.7%
Industry
Energyintensityofdirectreducedironfromnaturalgas(GJpertonne) 12 11 10
Processenergyintensityofprimarychemicals(GJpertonne) 17 16 15
Transport
AveragefuelconsumptionofICEheavytrucksfleet(index2020=100) 100 81 63
Buildings
Shareofzero‐carbon‐readybuildingsintotalstock <1% 25% >85%
Newbuildings:heating&coolingenergyconsumption(index2020=100) 100 50 20
Appliances:unitenergyconsumption(index2020=100) 100 75 60
Notes:ICE=internalcombustionengine;zero‐carbon‐readybuildings=seedescriptioninsection3.7.
 
13
In2020,theaveragebatteryelectriccarrequiredaround30%oftheenergyoftheaverageICEcartoprovide
thesamelevelofactivity.
Chapter 2 | A global pathway to net-zero CO emissions in 2050
67
2
2.5.2 Behaviouralchange
The wholescale transformation of the energy sector demonstrated in the NZE cannot be
achievedwithouttheactiveandwillingparticipationofcitizens.Itisultimatelypeoplewho
drive demand for energy‐related goods and services, and societal norms and personal
choiceswillplayapivotalroleinsteeringtheenergysystemontoasustainablepath.Just
under 40% of emissions reductions in the NZE result from the adoption of low‐carbon
technologies that require massive policy support and investment but little direct
engagementfromcitizensorconsumers,e.g.technologiesinelectricitygenerationorsteel
production.Afurther55%ofemissionsreductionsrequireamixtureofthedeploymentof
low‐carbon technologies and the active involvement or engagement of citizens and
consumers, e.g. installing a solar water heater or buying an EV. A final 8% of emissions
reductionsstemfrombehaviouralchangesandmaterialsefficiencygainsthatreduceenergy
demand, e.g. flying less for business purposes (Figure2.14). Consumer attitudes can also
impactinvestmentdecisionsbybusinessesconcernedaboutpublicimage.
IntheNZE,behaviouralchangereferstochangesinongoingorrepeatedbehaviouronthe
partofconsumerswhichimpactenergyservicedemandortheenergyintensityofanenergy‐
relatedactivity.
14
ReductionsinenergyservicedemandintheNZEalsocomefromadvances
intechnology,butthesearenotcountedasbehaviouralchanges.Forexample,increased
digitalisationandagrowingmarketshareofsmartappliances,suchassmartthermostatsor
space‐differentiatedthermalcontrolsreducethenecessityforpeopletoplayanactiverole
inenergysavinginhomesovertimeintheNZE.
There are three main types of behavioural change included in theNZE.Awiderangeof
governmentinterventionscouldbeusedtomotivatethesechanges(seesection2.7.1).
Reducing excessive or wasteful energy use. This includes reducing energy use in
buildingsandonroads,e.g.byreducingindoortemperaturesettings,adoptingenergy
savingpracticesinhomesandlimitingdrivingspeedsonmotorwaysto100kilometres
perhour.
Transportmodeswitching.Thisincludesashifttocycling,walking,ridesharingortaking
buses for trips in cities that would otherwise be made by car, as well as replacing
regionalair travel by high‐speed rail in regionswherethisisfeasible.Manyofthese
typesofbehaviouralchangeswouldrepresentabreakinfamiliarorhabitualwaysoflife
andassuchwouldrequireadegreeofpublicacceptanceandevenenthusiasm.Many
wouldalsorequirenewinfrastructure,suchascyclelanesandhigh‐speedrailnetworks,
clearpolicysupportandhighqualityurbanplanning.
Materialsefficiencygains.Thisincludesreduceddemandformaterials,e.g.higherrates
ofrecycling,andimproveddesignandconstructionofbuildingsandvehicles.Thescope
forgainstosomeextentreflectssocietalpreferences.Forinstance,insomeplacesthere
 
14
Thismeans,forexample,thatpurchasinganelectricheatpumpinsteadofagasboilerisnotconsideredas
a behavioural change, as it is both an infrequent event and does not necessarily impact energy service
demand.
IEA. All rights reserved.
68 International Energy Agency | Special Report
hasbeenashiftawayfromtheuseofsingleuseplasticsinrecentyears,atrendthat
acceleratesintheNZE.Gainsinmaterialsefficiencydependonamixtureoftechnical
innovationinmanufacturingandbuildingsconstruction,standardsandregulationsto
supportbest‐practiceandensureuniversaladoptionoftheseinnovations,andincreased
recyclinginsocietyatlarge.
Figure 2.14
Role of technology and behavioural change in emissions
reductions in the NZE
IEA.Allrightsreserved.
A
round 8% of emissions reductions stem from behavioural changes and materials efficienc
y
Notes:Low‐carbontechnologiesincludelow‐carbonelectricitygeneration,low‐carbongasesinend‐usesand
biofuels. Low‐carbon technologies with the active involvement of citizens includes fuel switching,
electrification and efficiency gains in end‐uses. Behavioural changes and materials efficiency includes
transportmodeswitching,curbingexcessiveorwastefulenergyuse,andmaterialsefficiencymeasures.
Three‐quarters of the emissions reductions from behavioural changes in the NZE are
achievedthroughtargetedgovernmentpoliciessupportedbyinfrastructuredevelopment,
e.g.ashifttorailtravelsupportedbyhighspeedrailways.The remainder come from
adoptingvoluntarychangesinenergysavinghabits,mainlyinhomes.Eveninthiscase,public
awarenesscampaignscanhelpshapeday‐to‐daychoicesabouthowconsumersuseenergy.
(Detailsofwhatgovernmentscandotohelpbringaboutbehaviouralchangesarediscussed
inChapter4).
Behaviouralchangesreduceenergy‐relatedactivitybyaround10‐15%onaverageoverthe
period to 2050 in the NZE, reducing overall global energy demand by over 37EJ in 2050
(Figure2.15).In2030,around1.7GtCO
2
emissionsareavoided,45%ofwhichcomefrom
transport,notablythroughmeasurestophaseoutcaruseincities and to improve fuel
economy.Forexample,reducingspeedlimitsonmotorwaysto100km/hreducesemissions
fromroadtransportby3%or140MtCO
2
in2030.Ashiftawayfromsingleoccupancycaruse
towardsridesharingorcyclingandwalkinginlargecitiessavesafurther185MtCO
2
.Around
‐35
‐30
‐25
‐20
‐15
‐10
‐5
2020 2030 2040 2050
GtCO
2
Low‐carbon
technologies
Low‐carbon
technologieswiththe
activeinvolvement
ofconsumers
Behaviouralchanges
andmaterials
Chapter 2 | A global pathway to net-zero CO emissions in 2050
69
2
40%ofemissionssavingsin2030occurinindustrybecauseofimprovementsinmaterials
efficiencyandincreasedrecycling,withthebiggestimpactscomingfromreducingwasteand
improvingthedesignandconstructionofbuildings.Theremainderofemissionssavingsin
2030arefrombehaviouralchangesinbuildings,for exampleadjustingspaceheatingand
coolingtemperatures.
Figure 2.15
CO
2
emissions and energy demand reductions from
behavioural changes and materials efficiency in the NZE
IEA.Allrightsreserved.
By 2030, behaviour changes and materials efficiency gains reduce emissions by
1.7 Gt CO
2
, and energy demand by 27 EJ; reductions increase further through to 2050
In 2050, the growing importance of low‐emissions electricity and fuels in transport and
buildingsmeansthat90%ofemissionsreductionsareinindustry,predominantlyinthose
sectorswhereitismostchallengingtotackleemissionsdirectly.Materialefficiencyalone
reducesdemandforcementandsteelby20%,savingaround1700MtCO
2
.Oftheemissions
reductions in transport in 2050, nearly 80% come from measures to reduce passenger
aviationdemand,withtheremainderfromroadtransport.
Thescope,scaleandspeedofadoptionofthebehaviouralchangesintheNZEvarieswidely
betweenregions,dependingonseveralfactorsincludingtheabilityofexistinginfrastructure
tosupportsuchchangesanddifferencesingeography,climate,urbanisation,socialnorms
andculturalvalues.Forexample,regionswithhighlevelsofprivatecarusetodayseeamore
gradualshiftthanotherstowardspublictransport,sharedcaruse,walkingandcycling;air
travelisassumedtoswitchtohighspeedrailonexistingorpotentialroutesonlywheretrains
could offer a similar journey time; and the potential for moderating air conditioning in
buildingsandvehiclestakesintoaccountseasonaleffectsandhumidity.Wealthierregions
generallyhavehigherlevelsofpercapitaenergy‐relatedactivity,andbehaviouralchanges
playanespeciallyimportantroleintheseregionsinreducingexcessiveorwastefulenergy
consumption.
‐40
‐32
‐24
‐16
‐8
2030 2040 2050
EJ
‐3.0
‐2.4
‐1.8
‐1.2
‐0.6
2030 2040 2050
GtCO₂
Transport
Buildings
Industry
Emissions Energy demand
IEA. All rights reserved.
70 International Energy Agency | Special Report
MostofthebehaviouralchangesintheNZEwouldhavesomeeffectonnearlyeveryones
dailylife,butnonerepresentsaradicaldeparturefromenergy‐reducingpracticesalready
experiencedinmanypartsoftheworldtoday.Forexample,inJapananawarenesscampaign
has successfully reduced cooling demand in line with the reductions assumed in many
regionsintheNZEby2040;legislationtolimiturbancarusehasbeenintroducedinmany
largecities;andspeedlimitreductionstoaround100km/h(theleveladoptedgloballyinthe
NZEby2030)havebeentestedintheUnitedKingdomandSpaintoreduceairpollutionand
improvesafety.
Table 2.4
Key global milestones for behavioural change in the NZE
Sector Year Milestone
Industry 2020
Globalaverageplasticscollectionrate=17%.
2030
Globalaverageplasticscollectionrate=27%.
Lightweightingreducestheweightofanaveragepassengercarby10%.
2050
Globalaverageplasticscollectionrate=54%.
Efficiencyoffertiliseruseimprovedby10%.
Transport 2030
Eco‐drivingandmotorwayspeedlimitsof100km/hintroduced.
UseofICEcarsphasedoutinlargecities.
2050
Regionalflightsareshiftedtohigh‐speedrailwherefeasible.
Businessandlong‐haulleisureairtraveldoesnotexceed2019levels.
Buildings 2030
Spaceheatingtemperaturesmoderatedto19‐20°Conaverage.
Spacecoolingtemperaturesmoderatedto24‐25°Conaverage.
Excessivehot‐watertemperaturesreduced.
2050
Useofenergy‐intensivematerialsperunitoffloorareadecreasesby30%.
Buildinglifetimeextendedby20%onaverage.
Note:Eco‐drivinginvolvespre‐emptivestoppingandstarting;ICE=internalcombustionengine.
2.5.3 Electrification
Thedirectuseoflow‐emissionselectricityinplaceoffossilfuelsisoneofthemostimportant
driversofemissionsreductionsintheNZE,accountingforaround20%ofthetotalreduction
achievedby2050.Globalelectricitydemandmorethandoublesbetween2020and2050,
withthelargestabsoluteriseinelectricityuseinend‐usesectorstakingplaceinindustry,
whichregistersanincreaseofmorethan11000TWhbetween2020and2050.Muchofthis
is due to the increasing use of electricity for low‐ and medium‐temperature heat and in
secondaryscrap‐basedsteelproduction(Figure2.16).
Intransport,theshareofelectricityincreasesfromlessthan2%in2020toaround45%in
2050 in the NZE. More than 60% of total passenger car sales globally are EVs by 2030
(comparedwith5%ofsalesin2020),andthecarfleetisalmostfullyelectrifiedworldwide
by2050(theremainderarehydrogen‐poweredcars).Theincreaseinelectricpassengercar
salesgloballyoverthenexttenyearsisovertwenty‐timeshigherthantheincreaseinICEcar
salesoverthelastdecade.Electrificationisslowerfortrucksbecauseitdependsonhigher
Chapter 2 | A global pathway to net-zero CO emissions in 2050
71
2
density batteries than those currently available on the market,especiallyforlonghaul
trucking, and on new high‐power charging infrastructure: electric trucks nevertheless
accountforaround25%oftotalheavytrucksalesgloballyby2030andaroundtwo‐thirdsin
2050.Theelectrificationofshippingandaviationismuchmorelimitedandonlygetsunder
wayafterlargeimprovementsinbatteryenergydensity(seesection3.6)(Figure2.17).Inthe
NZE,demandforbatteriesfortransportreachesaround14TWhin2050,90‐timesmorethan
in2020.Growthinbatterydemandtranslatesintoanincreasingdemandforcriticalminerals.
Forexample,demandforlithiumforuseinbatteriesgrows30‐foldto2030andismorethan
100‐timeshigherin2050thanin2020(IEA,2021).
Figure 2.16
Global electricity demand and share of electricity in
energy consumption in selected applications in the NZE
IEA.Allrightsreserved.
Global electricity demand more than doubles in the period to 2050,
with the largest rises to produce hydrogen and in industry
Notes: Merchant hydrogen = hydrogen produced by one company to sell to others. Light‐duty vehicles =
passengercarsandvans.Heavytrucks=medium‐freighttrucksandheavy‐freighttrucks.
In buildings, electricity demand is moderated in the NZE by a huge push to improve the
efficiency of appliances, cooling, lighting and building envelopes.Butalargeincreasein
activity,alongwiththewidespreadelectrificationofheatingthroughtheuseofheatpumps,
meansthatelectricitydemandinbuildingsstillrisessteadilyovertheperiodreaching66%of
totalenergyconsumptioninbuildingsin2050.
Alongsidethegrowthinthedirectuseofelectricityinend‐usesectors,thereisalsoahuge
increase in the use of electricity for hydrogen production. Merchant hydrogen produced
using electrolysis requires around 12000TWh in 2050 in the NZE,whichisgreaterthan
currenttotalannualelectricitydemandofChinaandtheUnitedStatescombined.
25%
50%
75%
4000
8000
12000
Merchant
hydrogen
Heavy
industry
Light
industry
Heatingin
buildings
Cooking Light‐duty
vehicles
Heavy‐
trucks
TWh
2020 2030 2050
2020 2030 2050
Electricitydemand:
Electricityshareinconsumption(rightaxis):
IEA. All rights reserved.
72 International Energy Agency | Special Report
Figure 2.17 Battery demand growth in transport and battery energy density
in the NZE
IEA.Allrightsreserved.
Nearly 20 battery giga-factories open every year to 2030 to satisfy battery demand
for electric cars in the NZE; higher density batteries are needed to electrify long-haul trucks
Notes:Li‐S=lithium‐sulphurbattery;Whperkg=Watthoursperkilogramme.
Theaccelerationofelectricitydemandgrowthfrom2%peryearoverthepastdecadeto3%
peryearthroughto2050,togetherwithasignificantlyincreasedshareofvariablerenewable
electricitygeneration,meansthatannualelectricitysectorinvestmentintheNZEisthree‐
timeshigheronaveragethaninrecentyears.Theriseinelectricitydemandalsocallsfor
extensive efforts to ensure the stability and flexibility of electricity supply through
demand‐sidemanagement,the operationof flexible low‐emissionssourcesofgeneration
includinghydropowerandbioenergy,andbatterystorage.
Table 2.5
Key global milestones for electrification in the NZE
Sector 2020 2030 2050
Shareofelectricityintotalfinalconsumption 20% 26% 49%
Industry
Shareofsteelproductionusingelectricarcfurnace 24% 37% 53%
Electricityshareoflightindustry 43% 53% 76%
Transport
Shareofelectricvehiclesinstock:cars 1% 20% 86%
two/three‐wheelers 26% 54% 100%
bus 2% 23% 79%
vans0% 22% 84%
heavytrucks 0% 8% 59%
Annualbatterydemandforelectricvehicles(TWh) 0.16 6.6 14
Buildings
Heatpumpsinstalled(millions) 180 600 1800
Shareofheatpumpsinenergydemandforheating 7% 20% 55%
Millionpeoplewithoutaccesstoelectricity 786 0 0
200
400
600
800
4
8
12
16
2010 2020 2030 2040 2050
Whperkg
TWhperyear
Long‐haultrucks Cars,buses,deliverytrucks Batterycelldensity(rightaxis)
Solidstate(400 Whperkg)
requiredforelectric long‐haultrucks
Li‐S(orother)(650Whperkg)
requiredforelectricaircrafts
Chapter 2 | A global pathway to net-zero CO emissions in 2050
73
2
2.5.4 Renewables
Atagloballevel,renewableenergytechnologiesarethekeyto reducing emissions from
electricitysupply.Hydropowerhasbeenaleadinglowemissionsourceformanydecades,
butitismainlytheexpansionofwindandsolarthattriplesrenewablesgenerationby2030
andincreasesitmorethaneightfoldby2050intheNZE.Theshareofrenewablesintotal
electricitygenerationgloballyincreasesfrom29%in2020toover60%in2030andtonearly
90% in 2050 (Figure2.18). To achieve this, annual capacity additions of wind and solar
between2020and2050arefive‐timeshigherthantheaverageoverthelastthreeyears.
Dispatchable renewables are critical to maintain electricity security, together with other
low‐carbongeneration,energystorageandrobustelectricitynetworks.IntheNZE,themain
dispatchable renewables globally in 2050 are hydropower (12% of generation),
bioenergy(5%),concentratingsolarpower(2%)andgeothermal(1%).
Figure 2.18
Fuel shares in total energy use in selected applications in the NZE
IEA.Allrightsreserved.
Renewables are central to emissions reductions in electricity, and they make major
contributions to cut emissions in buildings, industry and transport both directly and indirectly
Notes:Indirectrenewables=useofelectricityanddistrictheatproducedbyrenewables.Otherlow‐carbon
=nuclearpower,facilitiesequippedwithCCUS,andlow‐carbonhydrogenandhydrogen‐basedfuels.
IEA. All rights reserved.
74 International Energy Agency | Special Report
Renewables also play an important role in reducing emissions in buildings, industry and
transport.Renewablescanbeusedeitherindirectly,viatheconsumptionofelectricityor
districtheatingthatwasproducedbyrenewables,ordirectly,mainlytoproduceheat.
Intransport,renewablesplayanimportantindirectroleinreducingemissionsbygenerating
theelectricitytopowerelectricvehicles.Theyalsocontributetodirectemissionsreductions
throughtheuseofliquidbiofuelsandbiomethane.
Inbuildings,renewableenergyismainlyusedforwaterandspaceheating.Thedirectuseof
renewableenergyrisesfromabout10%ofheatingdemandgloballyin2020to40%in2050,
aboutthreequartersoftheincreaseisintheformofsolarthermalandgeothermal.Deep
retrofitsandenergy‐relatedbuildingcodesarepairedwithrenewableswheneverpossible:
almostallbuildingswithavailableroofspaceandsufficientsolarinsolationareequippedwith
solarthermalwaterheatersby2050,astheyaremoreproductivepersquaremetrethan
solarPVandasheatstorageinwatertanksisgenerallymorecost‐effectivethanstorageof
electricity.RooftopsolarPV,whichproducesrenewableelectricityonsite,iscurrently
installed on around 25million rooftops worldwide; the number increases to 100million
rooftopsby 2030and 240million by 2050. A further15% of heating in buildings in 2030
comesindirectlyfromrenewablesintheformofelectricity,andthisrisestoalmost40%in
2050.
Inindustry,bioenergyisthemostimportantdirectrenewableenergysourceforlow‐and
medium‐temperature needs in the NZE. Solar thermal and geothermal also produce low
temperatureheatforuseinnon‐energy‐intensiveindustriesandancillaryordownstream
processesin heavyindustries. Bioenergy,solar thermal and geothermaltogether provide
about15%ofindustryheatdemandin2030,roughlydoubletheirsharein2010,andthis
increasesto40%in2050.Theindirectuseofrenewableenergyviaelectricityadds15%to
thecontributionthatrenewablesmaketototalindustryenergyusein2050.
Table 2.6
Key deployment milestones for renewables
Sector 2020 2030 2050
Electricitysector
Renewablesshareingeneration 29% 61% 88%
Annualcapacityadditions(GW):TotalsolarPV 134 630 630
Totalwind 114 390 350
–ofwhich:Offshorewind 5 80 70
Dispatchablerenewables 31 120 90
End‐usessectors
RenewableshareinTFC 5% 12% 19%
HouseholdswithrooftopsolarPV(million) 25 100 240
Shareofsolarthermalandgeothermalinbuildings 2% 5% 12%
Shareofsolarthermalandgeothermalinindustryfinalconsumption 0% 1% 2%
Note:TFC=totalfinalconsumption.
Chapter 2 | A global pathway to net-zero CO emissions in 2050
75
2
2.5.5 Hydrogenandhydrogen‐basedfuels
TheinitialfocusforhydrogenuseintheNZEistheconversionofexistingusesoffossilenergy
to low‐carbon hydrogen in ways that do not immediately require new transmission and
distributioninfrastructure.Thisincludeshydrogenuseinindustryandinrefineriesandpower
plants,andtheblendingofhydrogenintonaturalgasfordistributiontoend‐users.
Globalhydrogenuseexpandsfromlessthan90Mtin2020tomorethan200Mtin2030;the
proportion of low‐carbonhydrogen risesfrom 10% in2020 to 70% in 2030(Figure2.19).
Aroundhalfoflow‐carbonhydrogenproducedgloballyin2030comesfromelectrolysisand
theremainderfromcoalandnaturalgaswithCCUS,althoughthisratiovariessubstantially
between regions. Hydrogen is also blended with natural gas in gasnetworks:theglobal
averageblendin2030includes15%ofhydrogeninvolumetricterms,reducingCO
2
emissions
fromgasconsumptionbyaround6%.
Figure 2.19
Global hydrogen and hydrogen-based fuel use in the NZE
IEA.Allrightsreserved.
The initial focus for hydrogen is to convert existing uses to low-carbon hydrogen;
hydrogen and hydrogen-based fuels then expand across all end-uses
Note:Includeshydrogenandhydrogencontainedinammoniaandsyntheticfuels.
Thesedevelopmentsfacilitatearapidscalingupofelectrolysermanufacturingcapacityand
theparalleldevelopmentofnewhydrogentransportinfrastructure.Thisleadstorapidcost
reductions for electrolysers and for hydrogen storage, notably insaltcaverns.Stored
hydrogen is used to help balance both seasonal fluctuations in electricity demand and
imbalances that may arise between the demand for hydrogen and its supply by off‐grid
renewable systems. During the 2020s, there is also a large increase in theinstallation of
end‐useequipmentforhydrogen,includingmorethan15millionhydrogenfuelcellvehicles
ontheroadby2030.
20%
40%
60%
80%
100%
100
200
300
400
500
2020 2025 2030 2035 2040 2045 2050
Mt
Other
Refineries
Ironandsteel
Chemicals
Other
Refineries
Industry
Shipping
Aviation
Road
Buildings
Electricitygeneration
Blendedingasgrid
Low‐carbonshare
Merchant
Onsite
IEA. All rights reserved.
76 International Energy Agency | Special Report
After 2030, low‐carbon hydrogen use expands rapidly in all sectorsintheNZE.Inthe
electricity sector, hydrogen and hydrogen‐based fuels provide an important low‐carbon
sourceofelectricitysystemflexibility,mainlythroughretrofittingexistinggas‐firedcapacity
tocofirewithhydrogen,togetherwithsomeretrofittingofcoalfiredpowerplantstocofire
withammonia.Althoughthesefuelsprovideonlyaround2%ofoverallelectricitygeneration
in2050,thistranslatesintoverylargevolumesofhydrogenandmakestheelectricitysector
animportantdriverofhydrogendemand.Intransport,hydrogenprovidesaroundone‐third
offueluseintrucksin2050intheNZE:thisiscontingentonpolicymakerstakingdecisions
that enable the development of the necessary infrastructure by 2030. By 2050,
hydrogen‐basedfuelsalsoprovidemorethan60%oftotalfuelconsumptioninshipping.
Of the 530Mt of hydrogen produced in 2050, around 25% is produced within industrial
facilities(includingrefineries),andtheremainderismerchanthydrogen(hydrogenproduced
byonecompanytoselltoothers).Almost30%ofthelowcarbonhydrogenusedin2050
takestheformofhydrogen‐basedfuels,whichincludeammoniaandsyntheticliquidsand
gases.Anincreasingshareofhydrogenproductioncomesfromelectrolysers,whichaccount
for60%oftotalproductionin2050.Electrolysersarepoweredbygridelectricity,dedicated
renewables in regions with excellent renewable resources and other low‐carbon sources
suchas nuclear power.Rolling out electrolysers at thepace required inthe NZEis a key
challengegiventhelackofmanufacturingcapacitytoday,asisensuringtheavailabilityof
sufficientelectricitygenerationcapacity.Globaltradeinhydrogendevelopsovertimeinthe
NZE,withlargevolumesexportedfromgasandrenewables‐richareasintheMiddleEast,
CentralandSouthAmericaandAustraliatodemandcentresinAsiaandEurope.
Table 2.7
Key deployment milestones for hydrogen and hydrogen-based fuels
Sector 2020 2030 2050
Totalproductionhydrogen‐basedfuels(Mt) 87 212 528
Low‐carbonhydrogenproduction 9 150 520
shareoffossi
l
‐basedwithCCUS 95% 46% 38%
shareofelectrolysis‐based 5% 54% 62%
Merchantproduction 15 127 414
Onsiteproduction 73 85 114
Totalconsumptionhydrogen‐basedfuels(Mt) 87 212 528
Electricity 0 52 102
ofwhichhydrogen 0 43 88
ofwhichammonia 0 8 13
Refineries 36 25 8
Buildingsandagriculture 0 17 23
Transport 0 25 207
ofwhichhydrogen 0 11 106
ofwhichammonia 0
8 44
ofwhichsyntheticfuels 0
5 56
Industry 51 93 187
Note:Hydrogen‐basedfuelsarereportedinmilliontonnesofhydrogenrequiredtoproducethem.
Chapter 2 | A global pathway to net-zero CO emissions in 2050
77
2
2.5.6 Bioenergy
Globalprimarydemandforbioenergywasalmost65EJin2020,ofwhichabout90%was
solidbiomass.Some40%ofthesolidbiomasswasusedintraditionalcookingmethodswhich
isunsustainable,inefficientandpolluting,andwaslinkedto2.5millionprematuredeathsin
2020.Theuseofsolidbiomassinthismannerfallstozeroby2030intheNZE,toachievethe
UNSustainableDevelopmentGoal7.Increasesinallformsofmodernbioenergymorethan
offset this,
with production rising from less than 40EJ in 2020 to around 100EJ in 2050
(Figure2.20).
15
Allbioenergyin2050comesfromsustainablesourcesandthefiguresinthe
NZEfortotalbioenergyusearewell below estimates of global sustainable bioenergy
potential,thusavoidingtheriskofnegativeimpactsonbiodiversity,freshwatersystems,and
foodpricesandavailability(seesection2.7.2).
Figure 2.20
Total bioenergy supply in the NZE
IEA.Allrightsreserved.
Modern bioenergy use rises to 100 EJ in 2050, meeting almost 20% of total energy needs.
Global demand in 2050 is well below the assessed sustainable potential
Notes:TES=Totalenergysupply.Conversionlossesoccurduringtheproductionofbiofuelsandbiogases.
Modernsolidbioenergyuserisesbyabout3%eachyearonaverageto2050.Intheelectricity
sector,wheredemandreaches35EJin2050,solidbioenergyprovidesflexiblelow‐emissions
generationtocomplementgenerationfromsolarPVandwind,anditremovesCO
2
fromthe
atmospherewhenequippedwithCCUS.In2050,electricitygenerationusingbioenergyfuels
reaches3300TWh,or5%oftotalgeneration.Bioenergyalsoprovidesaround50%ofdistrict
heatproduction.Inindustry,wheredemandreaches20EJin2050,solidbioenergyprovides
hightemperatureheatand canbecofiredwithcoaltoreducetheemissionsintensityof
 
15
Modernbioenergyincludesbiogases,liquidbiofuelsandmodernsolidbiomassharvestedfromsustainable
sources.Itexcludesthetraditionaluseofbiomass.
5%
10%
15%
20%
25%
20
40
60
80
100
2010 2020 2030 2040 2050
EJ
Traditionaluseofbiomass
Conversionlosses
Biogases
Liquidbiofuels
Buildingsandagriculture
Industry
Electricity
Modernbioenergyshare
shareinTES(rightaxis)
Modernsolidbioenergy
IEA. All rights reserved.
78 International Energy Agency | Special Report
existinggenerationassets.Demandishighestforpaperandcementproduction: in2050,
bioenergymeets60%ofenergydemandinthepapersectorand30%ofenergydemandfor
cementproduction.Modernsolidbioenergydemandinbuildingsincreasestonearly10EJin
2030,mostofitforuseinimprovedcookstovesasunsustainabletraditionalusesofbiomass
disappear. Bioenergy is also increasingly used for space and water heating in advanced
economies.
Householdandvillagebiogasdigestersinruralareasprovideasourceofrenewableenergy
andcleancookingfornearly500millionhouseholdsby2030intheNZEandtotalbiogasuse
rises to 5.5EJ in 2050 (from under 2EJ in 2020).
16
Biomethane demand grows to 8.5EJ,
thankstoblendingmandatesforgasnetworks,withaverage blending ratesincreasingto
above80%inmanyregionsby2050.Halfoftotalbiomethaneuseisintheindustrysector,
where biomethane replaces natural gas as a source of process heat. The buildings and
transport sectors each account for around a further 20% of biomethane consumption in
2050.
Oneofthekeyadvantagesofbioenergyisthatitcanuseexistinginfrastructure.Forexample,
biomethane can use existing natural gas pipelines and end‐user equipment,whilemany
drop‐inliquidbiofuelscanuseexistingoildistributionnetworksandbeusedinvehicleswith
only minor or limited alterations. BioLPG – LPG derived from renewable feedstocks – is
identical to conventional LPG and so can be blended and distributed in the same way.
Sustainablebioenergyalsoprovidesavaluablesourceofemploymentandincomeforrural
communities,reducesundueburdensonwomenoftentaskedwithfuelcollection,brings
healthbenefitsfromreducedairpollutionandproperwastemanagement, and reduces
methaneemissionsfrominefficientcombustionandthedecompositionofwaste.
Liquidbiofuelconsumptionrisesfrom1.6mboe/din2020to6mboe/din2030intheNZE,
mainly used in road transport. After 2030, liquid biofuels grow more slowly to around
7mboe/d in 2050 and their use shifts to shipping and aviation as electricity increasingly
dominatesroadtransport.Almosthalfofliquidbiofuelusein2050isforaviation,wherebio‐
keroseneaccountsforaround45%oftotalfueluseinaircraft.
Bioenergy with carbon capture and storage (BECCS) plays a critical role in the NZE in
offsettingemissionsfromsectorswherethefulleliminationofemissionsisverydifficultto
achieve.In2050,around10%oftotalbioenergyisusedinfacilitiesequippedwithCCUSand
around1.3GtCO
2
iscapturedusingBECCS.Around45%ofthisCO
2
iscapturedinbiofuels
production, 40% in the electricity sector and the rest in heavy industry, notably cement
production.
 
16
Biogasisamixtureofmethane,CO
2
andsmallquantitiesofothergasesproducedbyanaerobicdigestionof
organicmatterinanoxygenfreeenvironment.Biomethaneisanearpuresourceofmethaneproducedeither
byremovingCO
2
andothercontaminantsfrombiogasorthroughthegasificationofsolidbiomass(IEA,2020b).
Chapter 2 | A global pathway to net-zero CO emissions in 2050
79
2
Table 2.8 Key deployment milestones for bioenergy
 2020 2030 2050
Totalenergysupply(EJ) 63 72 102
Shareofadvancedbiomassfeedstock 27% 85% 97%
Moderngaseousbioenergy(EJ) 2.1 5.4 13.7
Biomethane 0.3 2.3 8.3
Modernliquidbioenergy(mboe/d) 1.6 6.0 7.0
Advancedbiofuels 0.1 2.7 6.2
Modernsolidbioenergy(EJ) 32 54 74
Traditionaluseofsolidbiomass(EJ) 25 0 0
Millionpeopleusingtraditionalbiomassforcooking 2340 0 0
Notes: mboe/d = million barrels of oil equivalent per day. Bioenergy from forest plantings is considered
advancedwhenforestsaresustainablymanaged(seesection2.7.2).
2.5.7 Carboncapture,utilisationandstorage
CCUS can facilitate the transition to net‐zero CO
2
emissions by: tackling emissions from
existingassets; providingaway to addressemissionsfromsome of the mostchallenging
sectors;providingacosteffectivepathwaytoscaleuplowcarbon hydrogen production
rapidly;andallowingforCO
2
removalfromtheatmospherethroughBECCSandDACCS.
IntheNZE,policiessupportarangeofmeasurestoestablishmarketsforCCUSinvestment
andtoencourageuseofsharedCO
2
transportandstorageinfrastructurebythoseinvolved
intheproductionofhydrogenandbiofuels,theoperationofindustrialhubs,andretrofitting
ofexistingcoal‐firedpowerplants.CapturevolumesintheNZEincreasemarginallyoverthe
next five years from the current level of around 40 Mt CO
2
peryear,reflectingprojects
currentlyunderdevelopment,butthereisarapidexpansionoverthefollowing25yearsas
policyactionbearsfruit.By2030,1.6GtCO
2
peryeariscapturedglobally,risingto7.6GtCO
2
in 2050 (Figure2.21). Around 95% of total CO
2
captured in 2050 is stored in permanent
geologicalstorageand5%isusedtoprovidesyntheticfuels.Estimatesofglobalgeological
storage capacity are considerably above what is necessary to store the cumulative CO
2
capturedandstoredintheNZE.Atotalof2.4GtCO
2
iscapturedin2050fromtheatmosphere
through bioenergy with CO
2
captureanddirectaircapture,ofwhich1.9GtCO
2
is
permanentlystoredand0.5GtCO
2
isusedtoprovidesyntheticfuelsinparticularforaviation.
Energy‐related and processCO
2
emissions in industry account foralmost 40%of the CO
2
captured in 2050 in the NZE. CCUS is particularly important for cement manufacturing.
AlthougheffortsarepursuedintheNZEtoproducecementmoreefficiently,CCUSremains
centraltoeffortstolimittheprocessemissionsthatoccurduringcementmanufacturing.The
electricitysectoraccountsforalmost20%oftheCO
2
capturedin2050(ofwhicharound45%
isfromcoalfiredplants,40%frombioenergyplantsand15%from gas‐fired plants).
CCUS‐equippedpowerplantscontributejust3%oftotalelectricitygenerationin2050but
thevolumesofCO
2
capturedarecomparativelylarge.Inemergingmarketanddeveloping
economies,wherelargenumbersofcoalpowerplantshavebeenbuiltrelativelyrecently,
IEA. All rights reserved.
80 International Energy Agency | Special Report
retrofits play an important rolewheretherearestorageopportunities. In advanced
economies,gasfiredplantswithCCUSplayabiggerrole,providingdispatchableelectricity
atrelativelylowcostinregionswithcheapnaturalgasandexistingnetworks.In2030,around
50GWofcoalfiredpowerplants(4%ofthetotalatthattime)and30GWofnaturalgas
powerplants(1%ofthetotal)areequippedwithCCUS,andthisrisesto220GW ofcoal
(almosthalfofthetotal)and170GWofnaturalgas (7%ofthetotal)capacityin2050. A
further30%ofCO
2
capturedin2050comesfromfueltransformation,includinghydrogen
and biofuels production as well as oil refining. The remaining 10% is from DAC, which is
rapidlyscaledupfromseveralofpilotprojectstodayto90MtCO
2
peryearin2030andjust
under1GtCO
2
peryearby2050.
Figure 2.21
Global CO
2
capture by source in the NZE
IEA.Allrightsreserved.
By 2050, 7.6 Gt of CO
2
is captured per year from a diverse range of sources. A total of 2.4 Gt
CO
2
is captured from bioenergy use and DAC, of which 1.9 Gt CO
2
is permanently stored.
Table 2.9 Key global milestones for CCUS
2020 2030 2050
TotalCO
2
captured(MtCO
2
) 40 1670 7600
CO
2
capturedfromfossilfuelsandprocesses 39 1325 5245
Power 3 340 860
Industry 3 360 2620
Merchanthydrogenproduction 3 455 1355
Non‐biofuelsproduction 30 170 410
CO
2
capturedfrombioenergy 1 255 1380
Power 0 90 570
Industry 0 15 180
Biofuelsproduction 1 150 625
Directaircapture 0 90 985
Removal 0 70 630
2
4
6
8
2020 2025 2030 2035 2040 2045 2050
GtCO₂
Directaircapture
Hydrogenproduction
Biofuelsproduction
Other
Industrycombustion
Industryprocesses
Bioenergy
Gas
Coal
Electricitysector
Industry
Fuelsupply
Other
Chapter 2 | A global pathway to net-zero CO emissions in 2050
81
2
2.6 Investment
The radical transformation of the global energy system required to achieve net‐zero CO
2
emissionsin2050hingesonabigexpansionininvestmentandabigshiftinwhatcapitalis
spenton.TheNZEexpandsannualinvestmentinenergyfromjustoverUSD2trillionglobally
onaverageoverthelastfiveyearstoalmostUSD5trillionby2030andtoUSD4.5trillionby
2050(Figure2.22).
17
TotalannualcapitalinvestmentinenergyintheNZErisesfromaround
2.5%ofglobalGDPinrecentyearstoabout4.5%in2030beforefallingbackto2.5%by2050.
Figure 2.22
Annual average capital investment in the NZE
IEA.Allrightsreserved.
Capital investment in energy rises from 2.5% of GDP in recent years to 4.5% by 2030; the
majority is spent on electricity generation, networks and electric end-user equipment
Notes:Infrastructureincludeselectricitynetworks,publicEV charging,CO
2
pipelines andstoragefacilities,
directaircapture andstoragefacilities, hydrogenrefuellingstations, and importandexportterminalsfor
hydrogen, fossil fuels pipelines and terminals. End‐use efficiency investments are the incremental cost of
improvingtheenergyperformanceofequipmentrelativetoaconventionaldesign.Electricitysystemsinclude
electricitygeneration,storage anddistribution,andpublic EVcharging.Electrification investmentsinclude
spending in batteries for vehicles, heat pumps and industrial equipment for electricity‐based material
productionroutes.
Theshiftinwhatcapitalisspentonleadstoannualinvestmentinelectricitygenerationrising
fromjustoverUSD500billionoverthelastfiveyearstomorethanUSD1600billionin2030,
beforefallingbackasthecostofrenewableenergytechnologiescontinuestodecline.Annual
nuclearinvestmentrisestoo:itmorethandoublesby2050comparedwithcurrentlevels.
AnnualinvestmentinfuelsupplyhoweverdropsfromaboutUSD575billiononaverageover
 
17
Investmentlevelspresentedinthisreportincludeabroaderaccounting of efficiency improvements in
buildingsthanreportedintheIEAWorldEnergyInvestment(IEA,2020c)andso differ from thenumbers
presentedthere.
1
2
3
4
5
2030 2040 2050 2030 2040 2050
TrillionUSD(2019)
Other
Fossilfuels
CCUS
Hydrogen
Electricitysystem
Electrification
Efficiency
Otherrenewables
Bioenergy
Buildings
Transport
Industry
Infrastructure
Electricitygeneration
Fuelproduction
Bysector Bytechnologyarea
2016‐20 2016‐20
Technologyarea
Sector
IEA. All rights reserved.
82 International Energy Agency | Special Report
thelasthalf‐decadetoUSD315billionin2030andUSD110billionin2050.Theshareoffossil
fuelsupplyintotalenergysectorinvestmentdropsfromits25%levelinrecentyearstojust
7%by2050:thisispartlyoffsetbytheriseinspendingonlow‐emissionsfuelsupply,suchas
hydrogen,hydrogen‐basedfuelsandbioenergy.Annualinvestmentinthesefuelsincreases
tonearlyUSD140billionin2050.InvestmentintransportincreasessignificantlyintheNZE
fromUSD150peryearinrecentyearstomorethanUSD1100billionin2050:thisstems
mainlyfromtheupfrontcostofelectriccarscomparedwithconventionalvehiclesdespite
thedeclineinthecostofbatteries.
Bytechnologyarea,electrification isthe dominant focus in theNZE.Inadditiontomore
investmentinelectricitygeneration,thereisahugeincreaseininvestmentinexpansionand
modernisation of electricity networks. Annual investment rises from USD260billion on
averageinrecentyearstoaroundUSD800billionin2030andremainsaboutthatlevelto
2050.Suchinvestmentisneededtoensureelectricitysecurityinthefaceofrisingelectricity
demandandtheproportionofvariablegenerationinthepowermix.Thereisalsoalarge
increaseininvestmentintheelectrificationofend‐usesectors,whichincludesspendingon
EV batteries, heat pumps and electricity‐based industrial equipment. In addition to
investmentinelectrification,thereisamoderateincreaseininvestmentinhydrogento2030
asproductionfacilitiesarescaledup,andlargerincreasesafterashydrogenuseintransport
expands:annualinvestmentinhydrogen,includingproductionfacilities,refuellingstations
andend‐userequipment,reachesUSD165billionin2030andoverUSD470billionin2050.
There is also an increase in global investment in CCUS (annual investment exceeds
USD160billionby2050andinefficiency(aroundUSD640billionannualinvestmentby2050,
mostly for deep building retrofits and efficient appliances in the industry and buildings
sectors).
Financingthe investmentneeded intheNZEinvolvesredirecting existing capital towards
clean energy technologies and substantially increasing the overall level of investment in
energy.Mostofthisincreaseininvestmentcomesfromprivatesources,mobilisedbypublic
policiesthatcreateincentives, set appropriateregulatoryframeworksandreformenergy
taxes.However,directgovernmentfinancingisalsoneededtoboostthedevelopmentof
new infrastructure projects and to accelerate innovation in technologies that are in the
demonstrationorprototypephasetoday.Projectsinmanyemergingmarketanddeveloping
economies are often relatively reliant on public financing, and policies that ensure a
predictableflowofbankableprojectshaveanimportantroleinboostingprivateinvestment
intheseeconomies,as doesthescalingupofconcessionaldebtfinancingandtheuseof
developmentfinance.Thereareextensivecross‐countryco‐operationeffortsintheNZEto
facilitatetheinternationalflowofcapital.
The large increase in capital investment in the NZE is partly compensated for by lower
operatingexpenditure.Operatingcostsaccounttodayforalargeshareofthetotalcostof
upstreamfuelsupplyprojectsandfossilfuelgenerationprojects:thecleantechnologiesthat
playanincreasingroleintheNZEarecharacterisedbymuchloweroperatingcosts.
Chapter 2 | A global pathway to net-zero CO emissions in 2050
83
2
2.7 Keyuncertainties
Theroadtonetzeroemissionsisuncertainformanyreasons:we cannot be sure how
underlying economic conditions will change, which policies willbemosteffective,how
peopleandbusinesseswillrespondtomarketandpolicysignals,orhowtechnologiesand
theircostswillevolvefromwithinoroutsidetheenergysector.TheNZEthereforeisjustone
possible pathway to achieve net‐zero emissions by 2050. Against this background, this
sectionlooksatwhattheimplicationswouldbeiftheassumptionsintheNZEturnouttobe
offthemarkwithrespecttobehaviouralchange,bioenergyandCCUSforfossilfuels.These
threeareaswereselectedbecausetheassumptionsmadeabouttheminvolveahighdegree
ofuncertaintyandbecauseoftheircriticalcontributionstoachievenet‐zeroemissionsby
2050.
Figure 2.23
Additional electricity demand in 2050 and additional investment
between 2021-2050 for selected areas of uncertainty
IEA.Allrightsreserved.
The absence of behaviour change, restrictions on bioenergy use and failure to develop
fossil fuel CCUS would each raise investment to meet net-zero emissions by USD 4-15 trillion
Notes:Nobehaviourassumes none of thebehaviouralchangesincluded in theNZE.Restrictedbioenergy
assumesnoincreaseinlanduseforbioenergyproduction.LowfossilCCUSassumesnoincreaseinfossilfuel‐
basedCCUSapartfromprojectsalreadyapprovedorunderconstruction.
Ouranalysisclearlyhighlightsthatmorepessimisticassumptionswouldaddconsiderablyto
boththecostsanddifficultyofachievingnet‐zeroemissionsby2050(Figure2.23).
Behaviouralchangesareimportantinreducingenergydemandintransport,buildings
and industry. If the changes in behaviour assumed in the NZE were not attainable,
emissionswouldbearound2.6GtCO
2
higherin2050.Avoidingtheseemissionsthrough
the use of additional low‐carbon electricity and hydrogen wouldcostanadditional
USD4trillion.
4%
8%
12%
16%
20%
3
5
8
10
13
No
behaviour
Restricted
bioenergy
Lowfossil
CCUS
ThousandTWh
IncreasefromNZE(rightaxis)
Electricitydemand
4%
8%
12%
16%
20%
4
8
12
16
No
behaviour
Restricted
bioenergy
Lowfossil
CCUS
TrillionUSD(2019)
Investment
IEA. All rights reserved.
84 International Energy Agency | Special Report
Bioenergyusegrowsby60%between2020and2050intheNZEandlanduseforits
propagationincreasesbyaround25%.Bioenergyusein2050intheNZEiswellbelow
current best estimates of global sustainable bioenergy potential, but there is a high
degreeofuncertaintyconcerningthislevel.Iflanduseforbioenergyremainsattoday’s
level, bioenergy use in 2050 would be around 10% lower, and achieving net‐zero
emissionsin2050wouldrequireUSD4.5trillionextrainvestment.
AfailuretodevelopCCUSforfossilfuelswouldsubstantiallyincreasetheriskofstranded
assetsandwouldrequirearoundUSD15trillionofadditionalinvestmentinwind,solar
andelectrolysercapacitytoachievethesamelevelofemissionsreductions.Itcouldalso
criticallydelayprogressonBECCSandDACCS:ifthesecannotbedeployedatscale,then
achievingnet‐zeroemissionsby2050wouldbeverymuchharder.
2.7.1 Behaviouralchange
ImpactofbehaviouralchangesinselectedsectorsintheNZE
ChangesinthebehaviourofenergyconsumersplayanimportantroleincuttingCO
2
emissionsandenergydemandgrowthintheNZE.Behaviouralchangesreduceglobalenergy
demandby37EJin2050,a10%reductioninenergydemandatthattime,andwithoutthem
cumulativeemissionsbetween2021and2050wouldbearound10%higher(Figure2.24).
Behaviouralchangeplaysaparticularlyimportantroleinthetransportsector.
Figure 2.24
Reduction in total final consumption due to behavioural changes
by fuel in the NZE
IEA.Allrightsreserved.
The impact of behaviour changes and materials efficiency on
final energy consumption increases over time
Note:Otherincludescoal,hydrogen,geothermal,solarthermal,syntheticoilandsyntheticgas.
Passengeraviation.Demandwouldgrowmorethanthreefoldgloballybetween2020and
2050intheabsenceoftheassumedchangesinbehaviourintheNZE.About60%ofthis
‐12%
‐9%
‐6%
‐3%
‐40
‐30
‐20
‐10
2020 2030 2040 2050
EJ
Oil Naturalgas Electricity Heat Modernbioenergy Other
Changeinfinalenergyconsumption(rightaxis)
Chapter 2 | A global pathway to net-zero CO emissions in 2050
85
2
growth would occur in emerging market and developing economies. In the NZE, three
changes lead to a 50% reduction in emissions from aviation in 2050,whilereducingthe
numberofflightsbyonly12%(Figure2.25).
Keepingairtravelforbusinesspurposesat2019levels.Althoughbusinesstripsfellto
almostzeroin2020,theyaccountedforjustoverone‐quarterofairtravelbeforethe
pandemic.Thisavoidsaround110MtCO
2
in2050intheNZE.
Keeping long‐haul flights (more than six hours) for leisure purposes at 2019 levels.
Emissionsfromanaveragelong‐haulflightare35‐timesgreaterthanfromaregional
flight(lessthanonehour).Thisaffectslessthan2%offlightsbutavoids70MtCO
2
in
2050.
Ashifttohigh‐speedrail.Theopportunitiesforshiftingregionalflightstohigh‐speedrail
varybyregion.Globally,weestimatethataround15%ofregionalflightsin2019could
havebeenshiftedgivenexistingrailinfrastructure;futurehigh‐speedraillinesensure
thatby2050around17%couldbeshifted(IEA,2019).
18
Thiswouldreduceemissionsby
around45MtCO
2
in2050(high‐speedtrainsgeneratenoemissionsin2050intheNZE).
Figure 2.25
Global CO
2
emissions from aviation and impact of behavioural
changes in the NZE
IEA.Allrightsreserved.
Demand for passenger aviation is set to grow significantly by 2050, but behavioural
changes reduce emissions by 50% in 2050 despite reducing flights by only 12%
Notes:Longhaul=morethan6hourflight;mediumhaul=16hourflight;regional=lessthan1hour.Business
flights=trips for work purposes; leisure flights = trips for leisure purposes. Average speeds vary by flight
distanceandrangefrom680‐750km/h.
 
18
Thisassumesthat:newrailroutesavoidwaterbodiesandtunnellingthroughelevatedterrain;traveltimes
are similar to aviation; and centres of demand are sufficientlylargetoensurethathighspeedrailis
economicallyviable.
20
40
60
80
100
0.2
0.4
0.6
0.8
1.0
2019 2020 2050
GtCO
2
Long‐haul
Medium‐haul
Regional
#REF!
Caplong‐haul
Capbusiness
Shifttohigh‐speed
Millionflights
Emissions reductions
Emissions
‐50%
(rightaxis)
leisureflights
flights
rail
Behaviour
reductions
IEA. All rights reserved.
86 International Energy Agency | Special Report
Caruse.Avarietyofnewmeasuresthataimtoreducetheuseofcarsincitiesandoverallcar
ownershiplevelsareassumedintheNZE.Theyleadtorapidgrowthintheridesharemarket
inurbanareas,aswellasphasingoutpollutingcarsinlargecitiesandreplacingthemwith
cycling,walkingandpublictransport.ThetimingofthesechangesintheNZEdependson
citieshavingthenecessaryinfrastructureandpublicsupport toensureashiftawayfrom
privatecaruse.Between2050%ofcartripsareshiftedtobuses,dependingonthecityin
question, with the remainder replaced by cycling, walking and public transport. These
changes reduce emissions from cars in cities by more than 320MtCO
2
in total in the
mid‐2030s(Figure2.26).Theirimpactonemissionsfadesovertimeascarsareincreasingly
electrified,buttheystillhaveasignificantimpactoncurbingenergyusein2050.
Figure 2.26
Global CO
2
emissions savings and car ownership per household
due to behavioural change in the NZE
IEA.Allrightsreserved.
Policies discouraging car use in cities lead to rapid reductions in CO
2
emissions and lower
car ownership levels, though the impact diminishes over time as cars are electrified
Thegradualmoveawayfromcarsincitiesalsohasanimpactoncarownershiplevels.Survey
data indicates that car‐share schemes and the provision of public transport reduces car
ownershipbyupto35%,withthebiggestchangestakingplaceinmultiplecarhouseholds
(Jochemetal.,2020;Martin,ShaheenandLidiker,2010).Withoutbehaviouralchanges,35%
ofhouseholdswouldhaveacarin2050;withbehaviouralchangesthissharefallstoaround
20%intheNZE,andtwo‐carhouseholdsfallfrom13%ofthetotaltolessthan5%.
ThechangingpatternsofmobilityincitiesinNZEhaveimplicationsformaterialsdemand.
Reducedcarownershipleadstoasmalldropinsteeldemandin2050, saving around
40MtCO
2
insteelproduction.Increasedcyclingwouldneedtobesupportedbybuildingan
estimated 80000km of new cycle lanes globally over the period to 2050, generating
increaseddemandforcementandbitumen.Thiseffectissmall,however:theextraemissions
associatedwiththiswouldbelessthan5%oftheemissionsavoidedbylowercaruse.
‐50
0
50
100
150
200
2020 2030 2040 2050
Ridesharing Cyclingandwalking Buses
MtCO
2
CO
2
emissionssavings
20%
40%
60%
80%
100%
0cars 1car 2cars 3+cars
Beforebehaviourchange
Afterbehaviourchange
Carsperhouseholdin2050
Chapter 2 | A global pathway to net-zero CO emissions in 2050
87
2
HowtobringaboutthebehaviouralchangesinNZE
Regulationsandmandatescouldenableroughly70%oftheemissionssavedbybehavioural
changesintheNZE.Examplesinclude:
Upperspeedlimits,whicharereducedovertimeintheNZEfromtheircurrentlevelsto
100km/h,cuttingemissionsfromroadvehiclesby3%in2050.
Appliancestandards,whichmaximiseenergyefficiencyinthebuildingssector.
Regulationscoveringheatingtemperaturesinofficesanddefaultcoolingtemperatures
forairconditioningunits,whichreduceexcessivethermaldemand.
Changesinitiallytackledbymarket‐basedmechanisms,e.g.swappingregionalflightsfor
high‐speedrail,
19
whichcanbeaddressedbyregulationovertimetomirrorchangesin
publicsentimentandconsumernorms.
Market‐basedinstrumentsuseamixoffinancialincentivesanddisincentivestoinfluence
decisionmaking.Theycouldenablearoundtwo‐thirdsoftheemissionssavedbybehavioural
changesintheNZE.Examplesinclude:
Congestionpricingandtargetedinterventionsdifferentiatedbyvehicletype,
20
suchas
chargesaimedatthemostpollutingvehicles,orpreferentialparkingforcleancars.
Transportdemandmeasuresthatreducetravel,suchasfueltaxesanddistance‐based
vehicleinsuranceandregistrationfees(Byars,WeiandHandy,2017).
Informationmeasuresthathelpconsumerstodrivechange,suchasmandatorylabelling
ofembodiedorlifecycleemissionsinmanufacturingandarequirementforcompanies
todisclosetheircarbonemissions.
Informationandawarenessmeasurescouldenablearound30%oftheemissionssavedby
behaviouralchangesintheNZE.Examplesinclude:
Personalised and real‐time travel planning information, which facilitates a switch to
walking,cyclingandpublictransport.
Product labelling and public awareness campaigns in combination, which help make
recyclingwidespreadandhabitual.
Comparisons with consumption patterns of similar households, which can reduce
wastefulenergyusebyupto20%(Aydin,BrounenandKok,2018).
NotallthebehaviouralchangesintheNZEwouldbeequallyeasytoachieveeverywhere,
andpolicyinterventionswouldneedtodrawoninsightsfrombehaviouralscienceandtake
intoaccountexistingbehaviouralnormsandculturalpreferences.Somebehaviouralchanges
maybemoresociallyacceptablethanothers.CitizenassembliesintheUnitedKingdomand
 
19
Alawbanningdomesticflightswhere a rail alternative of under two‐and‐a‐half hours exists has been
proposedinFrance(AssembleeNationale,2021).
20
Congestionchargingiscurrentlyusedin11majorcitiesandhasbeenshowntoreducetrafficvolumesbyup
to27%.Low‐emissionszoneschargevehiclestoenterurbanzonesbasedvehicletypeandcurrentlyexistin
15countries(TFL,2021;ToolsofChange,2014;EuropeanCommission,2021).
IEA. All rights reserved.
88 International Energy Agency | Special Report
Franceindicatealargelevelofsupportfortaxesonfrequentandlong‐distanceflyersandfor
banningpollutingvehiclesfromcitycentres;conversely,measuresthatlimitcarownership
orreducespeedlimitshavegainedlessacceptance(ConventionCitoyennepourleClimat,
2021;ClimateAssemblyUK,2020).Behaviouralchangeswhichreduceenergyuseinhomes
may be particularly well supported: a recent survey showed 85% support for line‐drying
clothesandswitchingoffappliances,andonly20%ofpeoplefeltthatreducingtemperature
settingsinhomeswasundesirable(NewgateResearchandCambridgeZero,2021).
Table 2.10
Key behavioural changes in the NZE
Policyoptions Relatedpolicy‐goals
Cost‐
effectiveness
Timeliness
Social
acceptability
CO
2
emissions
impact
Low‐carcities
PhaseoutICEcarsfrom
largecities.
Rideshareallurbancartrips.
Low‐emissionszones.
Accessrestrictions.
Parkingrestrictions.
Registrationcaps.
Parkingpricing.
Congestioncharges.
Investmentincyclinglanes
andpublictransportation.
Airpollution
mitigation.
Publichealth.
Reducedcongestion.
Urbanspace.
Beautificationand
liveability.

Fuel‐efficientdriving
Reducemotorwayspeedsto
lessthan100km/h.
Eco‐driving.
Raiseairconditioning
temperatureincarsby3°C.
Speedlimits.
Real‐timefuelefficiency
displays.
Awarenesscampaigns.
Roadsafety.
Reducednoise
pollution.

Reduceregionalflights
Replaceallflights<1hwhere
high‐speedrailisafeasible
alternative.
High‐speedrailinvestment.
Subsidiesforhigh‐speedrail
travel.
Pricepremiums.
Lowerairpollution.
Lowernoisepollution.

Reduceinternationalflights
Keepairtravelforbusiness
purposesat2019levels.
Keeplong‐haulflightsfor
leisureat2019levels.
Awarenesscampaigns.
Pricepremiums.
Corporatetargets.
Frequent‐flyerlevies.
Lowerairpollution.
Lowernoisepollution.

Spaceheating
Targetaverageset‐point
temperaturesof19‐20°C.
Awarenesscampaigns.
Consumptionfeedback.
Corporatetargets.
Publichealth.
Energyaffordability.

Spacecooling
Targetaverageset‐point
temperaturesof24‐25°C.
Awarenesscampaigns.
Consumptionfeedback.
Corporatetargets.
Publichealth.
Energyaffordability.

=poormatch =neutralmatch =goodmatch
Notes:Largecities=citiesover1millioninhabitants.ICE=internalcombustionengine.CO
2
emissionsimpact
=cumulativereductions2020‐2050.Eco‐driving= earlyupshiftingaswellasavoidingsuddenacceleration,
stopsoridling.Thenumberofjobsthatcanbedoneathomevaries considerably by region, globally, an
averageof20%ofjobscanbedoneathome.
Chapter 2 | A global pathway to net-zero CO emissions in 2050
89
2
ThebehaviouralchangesintheNZEwouldbringwiderbenefitsintermsofairpollutionin
cities,roadsafety,noisepollution,congestionandhealth.Attitudestopolicyinterventions
canchangequicklywhenco‐benefitsbecomeapparent.Forexample,supportforcongestion
charging in Stockholm jumped from less than 40% when the schemewasintroducedto
around70%threeyearslater;asimilartrendwasseeninSingapore,Londonandothercities,
allofwhichexperienceddeclinesinairpollutionaftertheintroductionofcharging(Toolsof
Change,2014;DEFRA,2012).
Arenet‐zeroemissionsby2050stillpossiblewithoutbehaviouralchange?
IfthebehaviouralchangesdescribedintheNZEwerenottomaterialise,finalenergyuse
would be 27 EJ and emissions 1.7GtCO
2
higher in 2030, and they would be 37EJ and
2.6GtCO
2
higherin2050.Thiswouldfurtherincreasethealreadyunprecedentedramp‐up
neededinlowcarbontechnologies.TheshareofEVsintheglobalcarfleetwouldneedto
increasefromaround20%in2030to45%toensurethesamelevelofemissionsreductions
(Figure2.27). Achieving the same reductionin emissions in homeswouldrequireelectric
heat pumps sales to reach 680million in 2030 (compared with 440million in the NZE).
Without gains in materials efficiency, the share of low‐carbon primary steel production
wouldneedtobemorethantwiceashighin2030asintheNZE.In2050,theuseof
sustainableaviationfuelswouldalsoneedtoriseto7mboe/d(comparedwith5mboe/din
theNZE).Emissionsfromcementandsteelproductionwouldbe1.7GtCO
2
higherin2050
thanintheNZE,andsorequireincreaseddeploymentofCCUSinindustry,deploymentof
electricarcfurnacesandmoreuseoflow‐carbonhydrogen.
Figure 2.27
Share of low-carbon technologies and fuels with and without
behavioural change in 2030 in the NZE
IEA.Allrightsreserved.
In the absence of behavioural changes, the share of low-emissions technologies in end-
uses in 2030 would need to be much larger to achieve the same emissions as in the NZE
Notes:Electriccars=shareofelectriccarsontheroadglobally.Sustainableaviationfuels=biojetkerosene
andsyntheticjetkerosene.Low‐carbonsteelreferstoprimarysteelproduction.
10%
20%
30%
40%
50%
Electriccars Heatpumpsin
residentialbuildings
Low‐carbonsteel Sustainableaviation
fuels
NZE Additionalwithoutbehaviourchanges 2020
IEA. All rights reserved.
90 International Energy Agency | Special Report
2.7.2 Bioenergyandland‐usechange
ModernformsofbioenergyplayakeyroleinachievingnetzeroemissionsintheNZE.
Bioenergyisaversatilerenewableenergysourcethatcanbeusedinallsectors,anditcan
oftenmakeuseofexistingtransmissionanddistributioninfrastructure and end‐user
equipment. But there are constraints on expanding the supply of bioenergy: with finite
potential for bioenergy production from waste streams, there are possible trade‐offs
between expanding bioenergy production, achieving sustainable development goals and
avoidingconflictswithotherlanduses,notablyfoodproduction.
ThelevelofbioenergyuseintheNZEtakesaccountoftheseconstraints:bioenergydemand
in 2050 is around 100EJ. The global sustainable bioenergy potential in 2050 has been
assessedtobeatleast100EJ(Creutzig,2015)andrecentassessmentsestimateapotential
between 150‐170EJ when integrating relevant UN Sustainable Development Goals
(Frank,2021; IPCC, 2019; IPCC, 2014; Wu, 2019). However, there is a high degree of
uncertainty over the precise levels of this potential. Using modelling developed in
co‐operation with IIASA, here we examine the implications for achieving net‐zero CO
2
emissionsby2050iftheavailablelevelsofsustainablebioenergyweretobelower.Wealso
examinewhatwouldneedtobedonetoachievelargereductionsin emissions from
agriculture,forestryandotherlanduse(AFOLU).
Ensuringasustainablesupplyofbioenergy
Most liquid biofuels produced today come from dedicated bioenergy crops such as
sugarcane,corn or oil crops, often knownasconventional biofuels.The expanded use of
feedstocksandarablelandtoproducethesebiofuelscanconflictwithfoodproduction.In
theNZE,thereisashifttowardstheuseofsustainable,certifiedagriculturalproductsand
wood. Biofuel production processes in the NZE use advanced conversion technologies
coupledwith CCUS where possible(seesection3.3.2). The emphasisisalso on advanced
bioenergyfeedstocks,includingwastestreamsfromotherprocesses,short‐rotationwoody
cropsandfeedstocksthatdonotrequiretheuseofarableland. Advanced bioenergy
accounts for the vast majority of bioenergy supply in the NZE by2050.Theuseof
conventionalenergycropsforbiofuelproductiongrowsfromaround9EJin2020toaround
11EJin2030,butthenfallsby70%to3EJin2050(includingfeedstocksconsumedinthe
biofuelproductionprocesses).
Advancedbioenergyfeedstocksthatdonotrequirelandincludeorganicwastestreamsfrom
agricultureandindustry,andwoodyresiduesfromforestharvestingandwoodprocessing.
InvestmentincomprehensivewastecollectionandsortingintheNZEunlocksaround45EJ
ofbioenergysupplyfromvariousorganicwastestreamswhichisprimarilyusedtoproduce
biogasesandadvancedbiofuels(Figure2.28).Woodyresiduesfromwoodprocessingand
forestharvestingprovideafurther20EJofbioenergyin2050intheNZE–lessthanhalfof
currentbestestimatesofthetotalsustainablepotential.Bioenergycanalsobeproduced
Chapter 2 | A global pathway to net-zero CO emissions in 2050
91
2
fromdedicatedshort‐rotationwoodycrops(25EJofbioenergysupplyin2050).
21
Sustainably
managedforestryfuelwoodorplantations
22
andtreeplantingsintegratedwithagricultural
productionviaagroforestrysystemsthatdonotconflictwithfoodproductionorbiodiversity
providejustover10EJofbioenergyin2050.
Figure 2.28
Global bioenergy supply by source in the NZE
IEA.Allrightsreserved.
Bioenergy use increases by around 60% between 2020 and 2050,
while shifting away from conventional feedstocks and the traditional use of biomass
Note:Organicwastestreamsincludeagriculturalresidues,foodprocessing,industrialandmunicipalorganic
wastestreams;theydonotrequirelandarea.
Source:IEAanalysisbasedonIIASAdata.
ThetotallandareadedicatedtobioenergyproductionintheNZEincreasesfrom330million
hectares(Mha)in2020to410Mhain2050.In2050,around270Mhaisforest,representing
aroundone‐quarterofthetotalareaofglobalmanagedforests,andaround5%oftotalforest
area.Thereis130Mhaoflandusedforshort‐rotationadvancedbioenergycropsin2050and
10Mhaforconventionalbioenergycrops.Thereisnooverallincreaseincroplandusefor
bioenergyproductionintheNZEfromtoday’slevelandnobioenergycropsaredeveloped
onforestedlandintheNZE.
23
Aswellasallowingamuchgreaterlevelofbioenergycrop
productiononmarginallands,woodyenergycropscanproducetwiceasmuchbioenergyper
hectareasconventionalbioenergycrops.
 
21
Woodyshort‐rotationcoppicecropsgrownoncropland,pasturelandormarginallandsnotsuitedtofood
crops.
22
Sustainableforestrymanagementensuresthatthecarbonstockandcarbonabsorptioncapabilityofthe
forestisexpandedorremainsunchanged.
23
Ofthe140Mhalandusedforbioenergycropsin2050,70Mhaaremarginallandsorlandcurrentlyusedfor
livestockgrazingand70Mhaarecropland.Thereisa60Mhaincreaseincroplanduseforwoodycropsto2050
intheNZEbutthisisoffsetbyareductionincroplanduseforproducingconventionalbiofuelfeedstocks.
20
40
60
80
100
2010 2020 2030 2040 2050
EJ
Forestryplantings
Short‐rotationwoodycrops
Forestandwoodresidues
Organicwastestreams
Traditionaluseofbiomass
Conventionalbioenergycrops
IEA. All rights reserved.
92 International Energy Agency | Special Report
Totalland use for bioenergyin theNZE iswell belowestimatedrangesof potentialland
availabilitythattakefullaccountofsustainabilityconstraints,includingtheneedtoprotect
biodiversityhotspotsandtomeettheUNSustainableDevelopmentGoal15onbiodiversity
andlanduse.Thecertificationofbioenergyproductsandstrictcontrolofwhatlandcanbe
convertedtoexpandforestryplantationsandwoodyenergycropsneverthelessiscriticalto
avoidland‐useconflictissues.CertificationisalsocriticaltoensuretheintegrityofCO
2
offsets
(seeChapter1),theuseofwhichshouldbecarefullymanagedandrestrictedtosectorsthat
lackalternativemitigationoptions.Arelatedland‐useissueishowtotackleemissionsthat
arisefromoutsidetheenergysector(Box2.3).
Box 2.3
Balancing emissions from land use, agriculture and forestry
Tolimittheglobaltemperaturerise,allsourcesofGHGemissionsneedtodeclinetoclose
tozeroortobeoffsetwithCDR.Theenergysectoraccountedforaroundthreequarters
oftotalGHGemissionsinrecentyears.ThelargestsourceofGHGemissionsotherthan
theenergysectorisagriculture,forestryandotherlanduse(AFOLU),whichproduced
between 10‐12GtCO
2
‐eq net GHG emissions in recent years.
24
CO
2
emissions from
AFOLUwerearound5‐6GtCO
2
,andnitrousoxideandmethaneemissionswerearound
5‐6GtCO
2
‐eq(IPCC,2019).
Options to reduce emissions from AFOLU and enhance removals include: halting
deforestation;improvingforestmanagementpractices;institutingfarmingpracticesthat
increase soil carbon levels; and afforestation. A number of companies have recently
expressedinterestinthesesortsofnature‐basedsolutionstooffsetemissionsfromtheir
operations(seeChapter1).Forafforestation,convertingaround170Mha(roughlyhalf
thesizeofIndia)toforestswouldsequesteraround1GtCO
2
annuallyby2050.
Achievingnet‐zeroenergy‐relatedandindustrialprocessCO
2
emissionsby2050inthe
NZEdoesnotrelyonanyoffsetsfromoutsidetheenergysector. But commensurate
actiononAFOLUwouldhelplimitclimatechange.Theenergy‐sectortransformationin
theNZEwouldreduceCO
2
emissionsfromAFLOUin2050byaround150MtCO
2
given
theswitchawayfromconventionalcropsandtheincreaseinshortrotationadvanced‐
bioenergycropproductiononmarginallandsandpastureland.Toreduceemissionsfrom
AFOLUfurtherwouldrequirereducingdeforestationbytwo‐thirdsby2050,instituting
improvedforestmanagementpracticesandplantingaround250Mhaofnewforests.The
combinedimpactofthesechangeswouldreduceCO
2
emissionsfromAFOLUtozeroby
2040 and absorb 1.3GtCO
2
annually by 2050. In this case, cumulative AFOLU CO
2
emissionsbetween2020and2050wouldbearound40GtCO
2
.
Non‐CO
2
emissionsfromlivestock,aswellasotheragriculturalemissions,maybemore
difficulttomitigategiventhelinkbetweenlivestockproductionandnitrousoxideand
methane emissions. Changes to farming practices and technology improvements,
 
24
AFOLUemissionsareemissionsfromanthropogenicactivitiesanddonotincludeCO
2
emissionsremoval
fromtheatmospherebynaturallandsinks.
Chapter 2 | A global pathway to net-zero CO emissions in 2050
93
2
includingchangestoanimalfeed,couldhelptoreducetheseemissions,butitmaybe
necessarytouseafforestationtooffsettheseemissionsentirely.Analternativecouldbe
toreducetheseemissionsbyreducingthedemandforlivestockproducts.Forexample,
weestimatethatreducingmeatconsumptioninhouseholdswiththehighestlevelsof
percapitaconsumptiontodaytotheglobalaveragelevelwouldreduceGHGemissions
bymorethan1GtCO
2
‐eqin2050.Lowerdemandforlivestockproductswouldreduce
thepastureneededgloballyforlivestockbycloseto200Mhaandthecroplandthatis
usedtogrowfeedforlivestockbyafurther80Mha.
Arenet‐zeroemissionsby2050possiblewithoutexpandinglanduseforbioenergy?
Estimates of the global sustainable bioenergy potential are subject to a high degree of
uncertainty,inparticularovertheextenttowhichnewlandarea could sustainably be
converted to bioenergy production. As a result, the NZE takes a cautious approach to
bioenergy use, with consumption in 2050 (100EJ) well below the latest estimates that
integraterelevantSDGs,whichsuggestapotentialbetween150170EJ.Butitispossiblethat
thelandavailabletoprovidesustainablebioenergyisevenmorelimited.Hereweexplore
the implications for emissions of restricting land use for dedicated bioenergy crops and
forestryplantationstoaround330Mha,whichiswhatisusedtoday.
Figure 2.29
Impact on electricity demand and ability to achieve net-zero
emissions by 2050 without expanded bioenergy land use
IEA.Allrightsreserved.
Achieving net-zero emissions without expanding bioenergy land use would require a
further 3 200 TWh from solar PV and wind, increasing capacity in the NZE by nearly 10%
Limitinglanduseto330Mhawouldreduceavailablebioenergysupplyin2050bymorethan
10EJ.Thiswouldmostlytaketheformofareductionintheavailabilityof short‐rotation
woodyenergycrops,whicharemainlyusedintheNZEinplaceoffossilfuelstoprovidehigh
temperatureheatforindustrialprocessesandforelectricitygeneration.Withoutbioenergy,
30
60
90
120
EJ
NZE Withoutexpandingbioenergylanduse
Bioenergyuse Electricitydemand SolarPVandwind
20
40
60
80
ThousandTWh
8
16
24
32
ThousandGW
IEA. All rights reserved.
94 International Energy Agency | Special Report
itislikelythathydrogenandsyntheticmethanewouldbeusedinstead,andtheirproduction
wouldrequirearound70Mtofhydrogenin2050(15%morethanintheNZE).Ifthiswereto
beproducedthroughtheuseofelectrolysisitwouldrequirearound750GWofelectrolyser
capacityandincreaseelectricitydemandin2050byaround3200TWh(Figure2.29).
Theadditionalelectricitythatwouldbeneededcouldbeproducedusingrenewables,which
wouldrequireanadditional1700GWofwindandsolarPVcapacityandalmost350GWof
additionalbatterycapacityin2050.Annualcapacityadditionsduringthe2030swouldneed
tobe160GWhigherthanintheNZE.Theadditionalwind,solar,batteryandelectrolyser
capacity,togetherwiththeelectricitynetworksandstorageneededtosupportthishigher
levelofdeploymentwouldcostmorethanUSD5trillionby2050.ThisisUSD4.5trillionmore
thanwouldbeneedediftheuseofbioenergyweretobeexpandedasenvisagedintheNZE,
andwouldincreasethetotalinvestmentneededintheNZEby3%.Whileitmighttherefore
be possible still to achieve net‐zero emissions in 2050 without expanding land use for
bioenergy,thiswouldmaketheenergytransitionsignificantlymoreexpensive.
2.7.3 CCUSappliedtoemissionsfromfossilfuels
Atotalof7.6GtCO
2
iscapturedin2050intheNZE,almost50%ofwhichisfromfossilfuel
combustion,20%isfromindustrialprocesses,andaround30%isfrombioenergyusewith
CO
2
captureandDAC(Figure2.30).TheuseofCCUSwithfossilfuelsprovidesalmost70%of
thetotalgrowthinCCUSto2030intheNZE.Yettheprospectsfortherapidscalingupof
CCUSareveryuncertainforeconomic,politicalandtechnicalreasons.Herewelookatthe
implications for reaching net‐zero emissions in 2050 if fossil fuel CCUS does not expand
beyondexistingandplannedprojects.
Figure 2.30
CCUS by sector and emissions source in the NZE
IEA.Allrightsreserved.
Fossil fuel emissions account for almost 70% of total CO
2
capture in 2030
and almost 50% in 2050
Note:DAC=directaircapture.
1
2
3
2020
2030
2040
2050
2020
2030
2040
2050
2020
2030
2040
2050
2020
2030
2040
2050
GtCO
2
Atmosphere
Industrial
processes
Bioenergy
Fossilfuels
Electricity Industry Fuelsupply DAC
CO
2
source
Chapter 2 | A global pathway to net-zero CO emissions in 2050
95
2
Arenet‐zeroemissionsby2050possiblewithoutfossilfuel‐basedCCUS?
Fossilfuel‐basedCCUSapplicationscomprisemostoftheCCUSprojectsaddedto2030inthe
NZE.Theseprojectshelptoreducerisksforothernon‐fossilfuelCCUSapplicationsthatare
essentialtoreachnetzero.Inviewofthechallengesthatfossilfuel‐basedCCUSprojectsface,
wehaveconstructedaLowCCUSCase(LCC)inwhichnonewfossilfuelCCUSprojectsare
developedbeyondthosealreadyunderconstructionorapprovedfordevelopment.Inthe
LCC,CO
2
emissionscapturedfromfossilfuelsareonlyaround150Mtin2050,comparedwith
3600Mtin2050intheNZE.
Inindustry,thelackofnewfossilfuelCCUSprojectsleadsintheLCCto1.2Gtofadditional
CO
2
emissionscomparedwiththeNZEin2050.Itwouldbenecessary to use alternative
technologiestoeliminatetheseemissionsinordertoachievenetzeroby2050.Anumberof
technologies that are at the prototype stage of development would be needed, such as
electric cement kilns or electric steam crackers for high‐valuechemicalsproduction(see
Box2.4).Assumingthatthesetechnologiescouldbedemonstratedanddeployedatscale,
this would increase electricity demand by around 2400TWh and hydrogen demand in
industry by around 45Mt in 2050. It would also be necessary to replace the 145Mt of
hydrogenthatisproducedintheNZEfromfossilfuelsequippedwithCCUS.Provisionofthis
190Mtofhydrogenthroughelectrolysiswouldrequireanadditional2000GWcapacityof
electrolysersin2050(almost60%morethanintheNZE)andanadditional9000TWhof
electricity(Figure2.31).
Figure 2.31
Impacts of achieving net-zero emissions by 2050 without
expanded fossil fuel-based CCUS
IEA.Allrightsreserved.
Failure to deploy fossil fuel-based CCUS would significantly increase electricity demand
and require much more solar, wind and electrolyser capacity
Note:LCC=LowCCUSCasewhereCCUSappliedtofossilfuelsisrestrictedtoprojectsunderconstructionor
approvedfordevelopmenttoday.
20
40
60
NZE LCC NZE LCC
ThousandTWh
Electricitydemand
Hydrogen Industry Other
2030 2050
Electricityfor:
10
20
30
NZE LCC NZE LCC NZE LCC NZE LCC
ThousandGW
Capacity
SolarPV Wind Electrolysers Batteries
2030 2050 2030 2050
Capacity:
IEA. All rights reserved.
96 International Energy Agency | Special Report
Box 2.4 Technology innovation in the NZE
Innovationiskeytodevelopingnewcleanenergytechnologiesandadvancingexisting
ones.Theimportanceofinnovationincreasesaswegetcloserto2050becauseexisting
technologieswillnotbeabletogetusallthewayalongthepathtonet‐zeroemissions.
Almost 50% of the emissions reductions needed in 2050 in the NZE depend on
technologiesthatareattheprototypeordemonstrationstage,i.e.arenotyetavailable
onthemarket(seeChapter4).
Afteranewideamakesitswayfromthedrawingboardtothelaboratoryandoutinto
theworld,therearefourkeystagesinthecleanenergyinnovationpipeline(IEA,2020d).
Butthepathwaytomaturitycanbelongandsuccessisnotguaranteed.
Prototype.Aconceptisdevelopedintoadesignandthenintoaprototypeforanew
device,e.g.afurnacethatproducessteelwithpurehydrogeninsteadofcoal.
Demonstration.Thefirstexamplesofanewtechnologyareintroducedatthesize
of a full‐scale commercial unit, e.g. a system that captures CO
2
emissions from
cementplants.
Marketuptake.Thetechnologyisbeingdeployedinanumberofmarkets.However,
it either has a cost and performance gap with established technologies (e.g.
electrolysersforhydrogenproduction)oritiscompetitivebuttherearestillbarriers,
suchasintegrationwithexistinginfrastructureorconsumerpreferences,toreaching
itsfullmarketpotential(e.g.heatpumps).Policyattentionisneededinbothcases
tostimulatewiderdiffusiontoreducecostsandtoovercomeexistingbarriers,with
moreofthecostsandrisksbeingbornegraduallybytheprivatesector.
Maturity. The technology has reached market stability, and new purchasesor
installations are constant or even declining in some environments as newer
technologiesstarttocompetewiththestockofexistingassets, e.g. hydropower
turbines.
Innovation is critical in the NZEto bring new technologies to marketandtoimprove
emerging technologies, including for electrification, CCUS, hydrogen and sustainable
bioenergy. The degree of reliance on innovation in the NZE varies across sectors and
alongthevariousstepsofthevaluechainsinvolved(Figure2.32).
Electrification.Almost30%ofthe170GtCO
2
cumulativeemissionsreductionsfrom
theuseoflow‐emissions electricity in the NZEcomesfromtechnologiesthat are
currently at prototype or demonstration stage, such as electricity‐based primary
steelproductionorelectrictrucks.
Hydrogen.Notallstepsofthelow‐carbonhydrogenvaluechainareavailableonthe
markettoday.Themajorityofdemandtechnologies,suchashydrogen‐basedsteel
production,areonlyatthedemonstrationorprototypestage.Thesedelivermore
than75%ofthecumulativeemissionsreductionsintheNZErelatedtohydrogen.
Chapter 2 | A global pathway to net-zero CO emissions in 2050
97
2
CCUS.Around55%ofthecumulativeemissionsreductionsthatcomefromCCUSin
theNZEarefromtechnologiesthatareatthedemonstrationorprototype stage
today.WhileCO
2
capturehasbeeninusefordecadesincertainindustrialandfuel
transformationprocesses,suchasammoniaproductionandnaturalgasprocessing,
it is still being demonstrated at a large scale in many of the other possible
applications.
Bioenergy.Around45%ofthecumulativeemissionsreductionsintheNZErelated
tosustainablebioenergycomefromtechnologiesthatareatthedemonstrationor
prototypestagetoday,mainlyfortheproductionofbiofuels.
Figure 2.32 Cumulative CO
2
emissions reductions for selected
technologies by maturity category in the NZE
IEA.Allrightsreserved.
CCUS, hydrogen and bioenergy technologies are less mature than electrification.
Most technologies for heavy industry and trucks are at early stages of development.
Notes:Bio‐FT=BiomassgasificationwithFischer‐Tropschsynthesis.Maturitylevelsarethetechnology
designatthemostadvancedstage.
20 40 60 80 100 120
Bio‐FT
Bio‐FTwithCCUS
BiomassCCUSpower
Steel
Cars
Shipping
Trucks
DACS
Steel
FossilCCUSpower
Cement
Electrifiedprimarysteel
Heatpumps
Electrictrucks
Electriccars
Wind
SolarPV
GtCO₂
Marketuptake Demonstration Prototype
CCUS
Hydrogen‐based fuels
Electricity
Bioenergy
IEA. All rights reserved.
98 International Energy Agency | Special Report
In the electricity sector, it would be necessary to produce an additional 11300TWh of
electricityforindustryandfueltransformationandtoreplacevirtuallyalloftheelectricity
generatedfromfossilfuel poweredplantsequippedwithCCUSin2050intheNZE.Using
renewables,thiswouldrequireanadditional7000GWofwindandsolarPVcapacityin2050.
Thisisaround30%morethanintheNZE,andwouldmeanthatannualcapacityadditionsof
solarPVandwindduringthe2030swouldneedtoreach1300GW(300GWmorethanin
theNZE).Toaccommodatethisadditionallevelofvariablerenewablesandtoprovidethe
flexibilitythatisavailablefromfossilfuelCCUSequippedplantsintheNZE,around660GW
morebattery capacity would be neededin 2050 (20%more than intheNZEinin2050),
togetherwithadditional110GWofotherdispatchablecapacity.
ReducingtherateofaddingCCUSatexistingcoal‐andgas‐firedgenerationplantsintheLCC
wouldalsoraisetheriskofstrandedassets.WeestimatethatuptoUSD90billionofexisting
coal‐andgas‐firedcapacitycouldbestrandedin2030anduptoUSD400billionby2050.
Investmentinfossil fuel‐basedCCUSintheNZE to 2050 isaround USD650billion,which
wouldbeavoidedintheLCC.ButadditionalinvestmentisrequiredintheLCCforextrawind,
solar and electrolyser capacity, for electricity‐based routes in heavy industry, and for
expandedelectricitynetworksandstoragetosupportthishigherlevelofdeployment.Asa
result,theadditionalcumulativeinvestmenttoreachnet‐zeroemissionsin2050intheLCC
isUSD15trillionhigherthanintheNZE.
Failure to develop CCUS for fossil fuels would also be likely to delay or prevent the
development of other CCUS applications. Without fossil fuel‐based CCUS, the number of
users and the volumes of the CO
2
transport and storage infrastructure deployed around
industrialclusterswouldbereduced.Feweractorsandmorelimitedpoolsofcapitalwould
beavailabletoincurthehighupfrontcostsofinfrastructure,aswellasotherrisksassociated
withtheinitialroll‐outofCCUSinfrastructureclusters.Inaddition,therewouldbefewer
spill‐over learning and cost‐reduction benefits from developing fossil fuel‐based CCUS,
makingthesuccessfuldemonstrationandscaleupofmorenascentCCUStechnologiesmuch
lesslikely.AdelayinthedevelopmentofotherCCUStechnologieswouldhaveamajorimpact
ontheprospectofgettingtonetzeroemissionsin2050.Forexample, CCUS is the only
scalablelow‐emissionsoptiontoremoveCO
2
fromtheatmosphereandtoalmosteliminate
emissionsfromcementproduction.Ifprogressinthesetechnologiesweredelayedandcould
notbedeployedatscale,thenachievingnet‐zeroemissionsby2050wouldbevastlymore
difficult.
Chapter 3 | Sectoral pathways to net-zero emissions by 2050 99
Chapter3
Sectoral pathways to net-zero emissions by 2050
\
FossilfuelusefallsdrasticallyintheNet‐ZeroEmissionsScenario(NZE)by2050,and
nonewoilandnaturalgasfieldsarerequiredbeyondthosethathavealreadybeen
approvedfordevelopment.Nonewcoalminesormineextensionsarerequired.Low‐
emissionsfuels–biogases,hydrogenandhydrogen‐basedfuels–seerapidgrowth.
Theyaccount for almost20% of global final energy in 2050,compared with 1% in
2020.Morethan500Mtoflow‐carbonhydrogenisproducedin2050,ofwhichabout
60% is produced using electrolysis that accounts for 20% of global electricity
generationin2050.Liquidbiofuelsprovide45%ofglobalaviationfuelin2050.
ElectricitydemandgrowsrapidlyintheNZE,rising40%fromtodayto2030andmore
thantwo‐and‐a‐half‐timesto2050,whileemissionsfromgenerationfalltonet‐zero
inaggregateinadvancedeconomiesby2035andgloballyby2040.Renewablesdrive
thetransformation,upfrom29%ofgenerationin2020to60%in2030andnearly90%
in2050.From2030to2050,600GWofsolarPVand340GWofwindareaddedeach
year.Theleast‐efficientcoalplantsarephasedoutby2030andallunabatedcoalby
2040.Investmentinelectricitygridstriplesto2030andremainselevatedto2050.
Inindustry,emissionsdropby20%to2030and90%to2050.Around60%ofheavy
industryemissionsreductionsin2050intheNZEcomefromtechnologiesthatarenot
readyformarkettoday:manyoftheseusehydrogenorCCUS.From2030,allnew
industrycapacityadditionsarenear‐zeroemissions.Eachmonthfrom2030,theworld
equips10newandexistingheavyindustryplantswithCCUS,adds3newhydrogen‐
basedindustrialplantsandadds2GWofelectrolysercapacityatindustrialsites.
Intransport,emissionsdropby20%to2030and90%to2050.Theinitialfocusison
increasingtheoperationalandtechnicalefficiencyoftransportsystems,modalshifts,
andtheelectrificationofroadtransport.By2030,electriccarsaccountforover60%
ofcarsales(4.6%in2020)andfuelcellorelectricvehiclesare30%ofheavytrucksales
(lessthan0.1%in2020).By2035,nearlyallcarssoldgloballyareelectric,andby2050
nearly all heavy trucks sold are fuel cell or electric. Low‐emissions fuels and
behaviouralchangeshelptoreduceemissionsinlong‐distancetransport,butaviation
andshippingremainchallengingandaccountfor330MtCO
2
emissionsin2050.
Inbuildings,emissionsdropby40%to2030andmorethan95%to2050.By2030,
around 20% of the existing building stock worldwide is retrofitted and all new
buildings comply with zero‐carbon‐ready building standards. Over 80% of the
appliances sold are the most efficient models available by 2025 in advanced
economiesandbythemid‐2030sworldwide.Therearenonewfossilfuelboilerssold
from2025,exceptwheretheyarecompatiblewithhydrogen,andsalesofheatpumps
soar. By 2050, electricity provides 66% of energy use in buildings (33% in 2020).
Naturalgasuseforheatingdropsby98%intheperiodto2050.
SUMMARY
IEA. All rights reserved.
100 International Energy Agency | Special Report
3.1 Introduction
The Net‐Zero Emissions by 2050 Scenario (NZE) involves a global energy system
transformationthatisunparalleledinitsspeedandscope.Thischapterlooksat howthe
mainsectorsaretransformed,aswellasthespecificchallenges and opportunities this
involves (Figure3.1). It covers the supply of fossil and low‐emissions fuels, electricity
generationandthethreemainend‐usesectors–industry,transportandbuildings.Foreach
sector,wesetoutsomekeytechnology and infrastructure milestones on which the NZE
dependsforitssuccessfuldelivery.Furtherwediscusswhatkeypolicydecisionsareneeded,
andbywhen,toachievethesemilestones.Recognisingthatthereisnosinglepathwayto
achievenet‐zeroemissionsby2050andthattherearemanyuncertaintiesrelatedtoclean
energytransitions,inthischapterwealsoexploretheimplicationsofchoosingnottorelyon
certain fuels, technologies or emissions reduction options across the transformation and
end‐usesectors.
Figure 3.1
CO
2
emissions by sector in the NZE
IEA.Allrightsreserved.
Emissions fall fastest in the power sector, with transport, buildings and industry seeing steady
declines to 2050. Reductions are aided by the increased availability of low-emissions fuels
Note: Other = agriculture, fuel production, transformation and related process emissions, and direct air
capture.
3.2 Fossilfuelsupply
3.2.1 EnergytrendsintheNet‐ZeroEmissionsScenario
Coalusedeclinesfrom5250milliontonnesofcoalequivalent(Mtce)in2020to2500Mtce
in 2030 and to less than 600Mtce in 2050. Even with increasing deployment of carbon
capture, utilisation and storage (CCUS), coal use in 2050 is 90% lower than in 2020
‐5
0
5
10
15
2010 2020 2030 2040 2050
GtCO₂
Power Buildings Transport Industry Other
Chapter 3 | Sectoral pathways to net-zero emissions by 2050 101
3
(Figure3.2).Oildemandneverreturnstoits2019peakanditdeclinesfrom88millionbarrels
perday(mb/d)in2020to72mb/din2030andto24mb/din2050,afallofalmost75%
between2020and2050.Naturalgasquicklyreboundsfromthedipindemandin2020and
risesthroughtothemid‐2020s,reachingapeakofaround4300billioncubicmetres(bcm),
beforedroppingto3700bcmin2030andto1750bcmin2050.By2050,naturalgasuseis
55%lowerthanin2020.
Figure 3.2
Coal, oil and natural gas production in the NZE
IEA.Allrightsreserved.
Between 2020 and 2050, demand for coal falls by 90%, oil by 75%, and natural gas by 55%
Oil
The trajectory of oil demand in the NZE means that no explorationfornewresourcesis
required and, other than fields already approved for development, no new oil fields are
necessary.However,continuedinvestmentinexistingsourcesofoilproductionareneeded.
OnaverageoildemandintheNZEfallsbymorethan4%peryearbetween2020and2050.If
allcapitalinvestmentinproducingoilfieldsweretoceaseimmediately,thiswouldleadtoa
lossofover8%ofsupplyeachyear.Ifinvestmentweretocontinueinproducingfieldsbut
nonewfieldsweredeveloped,thentheaverageannuallossofsupplywouldbearound4.5%
(Figure3.3).Thedifferenceismadeupbyfieldsthatarealreadyapprovedfordevelopment.
ThesedynamicsarereflectedintheoilpriceintheNZE,whichdropstoaroundUSD35/barrel
in 2030 and USD25/barrel in 2050. This price trajectory is largely determined by the
operatingcostsforfieldscurrentlyinoperation,andonly avery small volumeofexisting
productionwouldneedtobeshutin.However,incomefromoilproductioninallcountries
ismuchlowerintheNZEthaninrecentyears,
1
andtheNZEprojectssignificantstranded
 
1
Governmentsmayalsoreduceoreliminateupstreamtaxestoensurethatproductioncostsarebelowtheoil
pricetomaintaindomesticproduction.
50
100
150
200
1990 2000 2010 2020 2030 2040 2050
EJ
Historical
Projected
Natural gas
Oil
Coal
IEA. All rights reserved.
102 International Energy Agency | Special Report
capitalandstrandedvalue.
2
TheoilpriceintheNZEwouldbesufficientinprincipletocover
thecostofdevelopingnewfieldsforthelowestcostproducers,includingthoseintheMiddle
East,butitisassumedthatmajorresourceholdersdonotproceedwithinvestmentinnew
fieldsbecausedoingsowouldcreatesignificantadditionaldownwardpressureonprices.
TherefiningsectoralsofacesmajorchallengesintheNZE.Refinery throughput drops
considerablyandtherearesignificantchangesinproductdemand.Withrapidelectrification
ofthevehiclefleet,thereisamajordropindemandfortraditionalrefinedproductssuchas
gasoline and diesel, while demand for non‐combusted products such as petrochemicals
increases.Inrecentyears,around55%ofoildemandwasforgasolineanddiesel,butthis
dropstolessthan15%in2050,whiletheshareofethane,naphthaandliquefiedpetroleum
gas(LPG)risesfrom20%inrecentyearstoalmost60%in2050.Thisshiftaccentuatesthe
drop in oil demand for refiners, and refinery runs fall by 85% between 2020 and 2050.
Refinersareusedtocopingwithchangingdemandpatterns,butthescaleofthechangesin
theNZEwouldinevitablyleadtorefineryclosures,especiallyfor refineries not able to
concentrateprimarilyonpetrochemicaloperationsortheproductionofbiofuels.
Figure 3.3
Oil and natural gas production in the NZE
IEA.Allrightsreserved.
No new oil and natural gas fields are required beyond those already approved for
development. Supply is increasingly concentrated in a few major producing countries
Naturalgas
NonewnaturalgasfieldsareneededintheNZEbeyondthosealreadyunderdevelopment.
Alsonotneededaremanyoftheliquefiednaturalgas(LNG)liquefactionfacilitiescurrently
underconstructionorattheplanningstage.Between2020and2050,naturalgastradedas
 
2
Strandedcapitaliscapitalinvestmentinfossilfuelinfrastructurethatisnotrecoveredovertheoperating
lifetimeoftheassetbecauseofreduceddemandorreducedpricesresultingfromclimatepolicies.Stranded
valueisareductioninthefuturerevenuegeneratedbyanassetorassetownerassessedatagivenpointin
timebecauseofreduceddemandorreducedpricesresultingfromclimatepolicies(IEA,2020a).
25
50
75
100
125
2010 2020 2030 2040 2050
mb/d
MiddleEast NorthAmerica Eurasia Africa AsiaPacific CentralandSouthAmerica Europe
Oil
1
2
3
4
5
2010 2020 2030 2040 2050
Thousandbcm
Naturalgas
Chapter 3 | Sectoral pathways to net-zero emissions by 2050 103
3
LNGfallsby60%andtrade bypipelinefallsby65%.Duringthe2030s,globalnaturalgas
demanddeclinesbymorethan5%peryearonaverage,meaningthatsomefieldsmaybe
closedprematurelyorshutintemporarily.Declinesinnaturalgasdemandslowafter2040,
andmorethanhalfofnaturalgasusegloballyin2050istoproducehydrogeninfacilities
withCCUS.Thelargelevelofhydrogen,alsoproducedusingelectrolysis,andbiomethanein
theNZE,meansthatthedeclineintotalgaseousfuelsismoremutedthanthedeclinein
naturalgas.Thishasimportantimplicationsforthefutureofthegasindustry(seeChapter4).
Coal
NonewcoalminesorextensionsofexistingonesareneededintheNZEascoaldemand
declinesprecipitously.Demandforcokingcoalfallsataslightlyslowerratethanforsteam
coal,butexistingsourcesofproductionaresufficienttocoverdemandthroughto2050.Such
adeclineincoaldemandwouldhavemajorconsequencesforemploymentincoalmining
regions (see Chapter4). There is a slowdown in the rate of decline in the 2040s as coal
productionfacilitiesareincreasinglyequippedwithCCUS:intheNZE,around80%ofcoal
producedin2050appliesCCUS.
3.2.2 Investmentinoilandgas
Upstreamoiland gas investment averagesaboutUSD350billioneachyear from 2021to
2030intheNZE(Figure3.4).Thisissimilartothelevelin2020,butaround30%lowerthan
average levels during the previous five years. Once fields under development start
production,alloftheupstreaminvestmentintheNZEistosupportoperationsinexisting
fields;after2030,totalannualupstreaminvestmentisaroundUSD170billioneachyear.
Figure 3.4
Investment in oil and natural gas supply in the NZE
IEA.Allrightsreserved.
Once fields under development start production, all upstream oil and gas
investment is spent on maintaining production at existing fields
Note:Investmentinnewfieldsinthe2021‐2030periodisforprojectsthatarealreadyunderconstructionor
havebeenapproved.
200
400
600
1991‐
2000
2001‐
2010
2011‐
2020
2021‐
2030
2031‐
2040
2041‐
2050
1991‐
2000
2001‐
2010
2011‐
2020
2021‐
2030
2031‐
2040
2041‐
2050
BillionUSD(2019)
Refining
Transport
Existing
New
Oil Naturalgas
Fields
IEA. All rights reserved.
104 International Energy Agency | Special Report
3.2.3 Emissionsfromfossilfuelproduction
Emissionsfromthesupplychainsofcoal,oilandnaturalgasfalldramaticallyintheNZE.The
globalaveragegreenhousegas(GHG)emissionsintensityofoilproductiontodayisjustunder
100kilogrammes ofcarbon‐dioxideequivalent(kgCO
2
‐eq)perbarrel.Withoutchanges, a
largeproportionofglobalproductionwouldbecomeuneconomic,asCO
2
pricesareapplied
to the full value chains of fossil fuels. For example, by 2030 the CO
2
priceinadvanced
economiesintheNZEisUSD100pertonneofCO
2
(tCO
2
),whichwouldaddUSD10tothe
costofproducingeachbarrelattoday’saveragelevelofemissionsintensity.
Methaneconstitutesabout60%ofemissionsfromthecoalandnaturalgassupplychainsand
about35%ofemissionsfromtheoilsupplychain.IntheNZE,totalmethaneemissionsfrom
fossil fuels fall by around75% between 2020and 2030, equivalent to a 2.5gigatonne of
carbon‐dioxideequivalent(GtCO
2
‐eq)reductioninGHGemissions(Figure3.5).Aroundone‐
thirdofthisdeclineisaresultofanoverallreductioninfossilfuelconsumption,butthelarger
sharecomesfromahugeincreaseinthedeploymentofemissionsreductionmeasuresand
technologies,whichleadstotheeliminationofalltechnicallyavoidablemethaneemissions
by2030(IEA,2020a).
Figure 3.5
Methane emissions from coal, oil and natural gas in the NZE
IEA.Allrightsreserved.
Methane emissions from fossil fuels fall by 75% between 2020 and 2030 as result of a
concerted global effort to deploy all available reduction measures and technologies
Note:Mt=milliontonnes.
ActionstoreducetheemissionsintensityofexistingoilandgasoperationsintheNZEleads
to:theendofallflaring;theuseofCCUSwithcentralisedsourcesofemissions(includingto
capturenaturalsourcesof CO
2
thatareoften extracted withnaturalgas);and significant
electrification of upstream operations (often making use of off‐grid renewable energy
sources).
1200
2400
3600
40
80
120
2000 2005 2010 2015 2020 2025 2030
MtCO₂‐eq
Mtmethane
Naturalgas Oil Coal
Chapter 3 | Sectoral pathways to net-zero emissions by 2050 105
3
TheNZEinevitablybringssignificantchallengesforfossilfuelindustriesandthosewhowork
inthem,butitalsobringsopportunities.CoalminingdeclinesdramaticallyintheNZE,but
theminingofmineralsneededforcleanenergytransitionsincreasesveryrapidly,andmining
expertiseislikelytobehighlyvaluedinthiscontext.Theoilandgasindustrycouldplayakey
roleinhelpingtodevelopatscaleanumberofcleanenergytechnologiessuchasCCUS,low‐
carbonhydrogen,biofuelsandoffshorewind.Scalingupthesetechnologies andbringing
downtheircostswillrelyonlarge‐scaleengineeringandprojectmanagementcapabilities,
qualitiesthatareagoodmatchtothoseoflargeoilandgascompanies. These issues,
includingthequestionofhowtohelpthoseaffectedbythemajorchangesimpliedbythe
NZE,arediscussedinmoredetailinChapter4.
3.3 Low‐emissionsfuelsupply
3.3.1 EnergytrendsintheNet‐ZeroEmissionsScenario
Reachingnet‐zeroemissionswillrequirelow‐emissionsfuels
3
whereenergyneedscannot
easilyoreconomicallybemetbyelectricity(Figure3.6).Thisislikelytobethecaseforsome
modesoflong‐distancetransport(trucks,aviationandshipping)andofheatandfeedstock
supply in heavy industry. Some low‐emissions fuels are effectively drop‐in, i.e. they are
compatiblewiththeexistingfossilfueldistributioninfrastructureandend‐usetechnologies,
andrequirefewifanymodificationstoequipmentorvehicles.
Lowemissionsfuelstodayaccountforjust1%ofglobalfinalenergydemand,asharethat
increasesto20%in2050intheNZE.Liquidbiofuelsmeet14%ofglobaltransportenergy
demandin2050,upfrom4%in2020;hydrogen‐basedfuelsmeetafurther28%oftransport
energyneedsby2050.Low‐carbongases(biomethane,syntheticmethaneandhydrogen)
meet35%ofglobaldemandforgassuppliedthroughnetworksin2050,upfromalmostzero
today.Thecombinedshareoflow‐carbonhydrogenandhydrogen‐basedfuelsintotalfinal
energyuseworldwidereaches13%in2050.Hydrogenandammoniaalsoprovideimportant
low‐emissions sourcesof powersystem flexibilityand contribute 2%of overall electricity
generationin2050,whichisenoughtomaketheelectricitysectoranimportantdriverof
hydrogendemand.
 
3
Low‐emissionsfuelsrefertoliquidbiofuels,biogasandbiomethane,andhydrogen‐basedfuels(hydrogen,
ammoniaandsynthetichydrocarbonfuels)thatdonotemitCO
2
fromfossilfuelsdirectlywhenusedandalso
emitverylittlewhenbeingproduced.Forexample,hydrogenproducedfromnaturalgaswithCCUSandhigh
capturerates(90%orhigher)isconsideredalow‐emissionsfuel,butnotifproducedwithoutCCUS.
IEA. All rights reserved.
106 International Energy Agency | Special Report
Figure 3.6 Global supply of low-emissions fuels by sector in the NZE
IEA.Allrightsreserved.
Low-emissions fuels in the form of liquid biofuels, biomethane, hydrogen-based fuels
help to decarbonise sectors where direct electrification is challenging
Notes:TFC=totalfinalconsumption.Low‐carbongasesinthegasgridreferstotheblendingofbiomethane,
hydrogenandsyntheticmethanewithnaturalgasinagasnetworkforuseinbuildings,industry,transportand
electricitygeneration.SynfuelsrefertosynthetichydrocarbonfuelsproducedfromhydrogenandCO
2
.Final
energyconsumptionofhydrogenincludes,inadditiontothefinalenergyconsumptionofhydrogen,ammonia
andsynthetichydrocarbonfuels,theon‐sitehydrogenproductionintheindustrysector.
3.3.2 Biofuels
4
Around10%oftheglobalprimarysupplyofmodernbioenergy(biomassexcludingtraditional
usesforcooking)wasconsumedasliquidbiofuelsforroadtransportand6%wasconsumed
as biogases (biogas and biomethane) to provide power and heat in 2020, with the rest
directly used for electricity generation and heating in the residential sector. Supply
acceleratessharplyintheNZEwithliquidbiofuelsexpandingbyafactorofalmostfourand
biogasesincreasingbyafactorofsixby2050.
Allbutabout7%ofliquidbiofuelsfortransportarecurrentlyproducedfromconventional
cropssuchassugarcane,cornandsoybeans.Suchcropsdirectlycompetewitharableland
thatcanbeusedforfoodproduction,whichlimitsthescopeforexpandingoutput.Somost
ofthegrowthinbiofuelsintheNZEcomesfromadvancedfeedstockssuchaswastesand
residuesandwoodyenergycropsgrownonmarginallandsandcroplandnotsuitableforfood
 
4
Liquidsandgasesproducedfrombioenergy.
10% 20% 30% 40%
2020
2030
2050
2020
2030
2050
2020
2030
2050
Shipping
Aviation
Roadtransport
Biomethane
Hydrogen
Syntheticmethane
Buildings
Industry
Transport‐hydrogen
Transport‐ammonia
Transport‐synfuels
Liquidbiofuelsintransport
Low‐carbongasesingasgrid
Hydrogen‐basedfuelsinTFC
Chapter 3 | Sectoral pathways to net-zero emissions by 2050 107
3
production(seesection2.7.2).Advancedliquidbiofuelproductiontechnologyusingwoody
feedstockexpandsrapidlyoverthenextdecade intheNZE,anditscontributiontoliquid
biofuelsjumpsfromlessthan1%in2020toalmost45%in2030and90%in2050(Figure3.7).
By2030,productionreaches2.7millionbarrelsofoilequivalentperday(mboe/d)by2030,
underpinnedbybiomassgasificationusingtheFischer‐Tropschprocess(bio‐FT)andcellulosic
ethanol,mostlytoproducedrop‐insubstitutesfordieselandjetkerosene.Advancedliquid
biofuelproductionincreasesbyanadditional130%tomorethan6mboe/din2050,thebulk
ofwhichisbiokerosene.
Figure 3.7
Global biofuels production by type and technology in the NZE
IEA.Allrightsreserved.
Liquid biofuel production quadruples while that of biogases expands sixfold between 2020
and 2050, underpinned by the development of sustainable biomass supply chains
Notes:EJ=exajoules;CCUS=carboncapture,utilisationandstorage. Conventional ethanol refers to
productionusingfoodenergycrops.Advancedethanolreferstoproductionusingwastesandresiduesand
non‐foodenergycropsgrownonmarginalandnon‐arableland.Conventionalbiodieselincludesfattyacidand
methylesters(FAME)routeusingfoodenergycrops.Advancedbiodiesel includes biomass‐based Fischer‐
TropschandHEFAroutesusingwastes,residuesandnon‐foodenergycropsgrownonmarginalandnon‐arable
land.Biomethaneincludesbiogasupgradingandbiomassgasification‐basedroutes.
Production using these feedstocks is mostly under development today. Current output
capacity,principallycellulosicethanol,isabout2.5thousandbarrelsofoilequivalentperday
(kboe/d). The NZE assumes that projects currently in the pipeline in Japan, the United
KingdomandtheUnitedStateswillbringthesetechnologiestothemarketwithinthenext
fewyears.Thescaleuprequiredforalladvancedliquidbiofuels(includingfromwasteoils)
overthenextdecadeisequivalenttobuildingone55kboe/dbiorefineryeverytenweeks
(theworld’slargestbiorefineryhascapacityof28kboe/d).
Thesupplyofthesebiofuelsafter2030shiftsrapidlyintheNZEfrompassengervehiclesand
lighttrucks,whereelectrificationisincreasinglytheorderoftheday,toheavyroadfreight,
shipping and aviation. Ammonia makes inroads into shipping. Advanced liquid biofuels
increasetheirshareoftheglobalaviationfuelmarketfrom15%in2030to45%in2050.
5 10 15
2050
2040
2030
2020
2050
2040
2030
2020
EJ
Biogas
Biomethane
Conventionalethanol
Advancedethanol
Conventionalbiodiesel
Advancedbiodieselandbiokerosene
withCCUS
Liquidbiofuels Gaseousbiofuels
IEA. All rights reserved.
108 International Energy Agency | Special Report
Advancedbiofuelssuchashydrogenatedestersandfattyacids(HEFA)andbio‐FTareableto
adjusttheirproductslates(uptoapoint)fromrenewabledieseltobiokerosene,andexisting
ethanol plants, especially those that can be retrofitted with CCUS or integrated with
cellulosicfeedstock,alsomakeacontribution.
Thesupplyofbiogasesincreasesevenmorethanliquidbiofuels.Injectionintogasnetworks
expandsfromunder1%oftotal gasvolumein2020toalmost20%in2050,reducingthe
emissionsintensityofthenetwork‐basedgas.Biomethaneismostlyproducedbyupgrading
biogasproducedfromanaerobicdigestionoffeedstockssuchasagriculturalresidueslike
manureandbiogenicmunicipalsolidwaste,therebyavoidingmethaneemissionsthatwould
otherwisebereleased.Duetothedispersednatureofthesefeedstocks,thisassumesthe
construction of thousands of injection sites and associated distribution lines every year.
Biogasandbiomethanearealsousedascleancookingfuelsandinelectricitygenerationin
theNZE.
TheproductionofbiofuelscanbecombinedwithCCUSatarelativelylowcostinsomebiofuel
production routes (ethanol, bio‐FT, biogas upgrading) because the processes involved
releaseverypurestreamsofCO
2
.IntheNZE,theuseofbiofuelswithCCUSresultsinannual
carbondioxideremoval(CDR)of0.6GtCO
2
in 2050, which offset residual emissions in
transportandindustry.
3.3.3 Hydrogenandhydrogen‐basedfuels
Hydrogenuseintheenergysectortodayislargelyconfinedtooilrefiningandtheproduction
ofammoniaandmethanolinthechemicalsindustry.Globalhydrogendemandwasaround
90milliontonnes(Mt)in2020,mainlyproducedfromfossilfuels(mostlynaturalgas)and
emitting close to 900MtCO
2
. Both the amount needed and the production route of
hydrogenchangeradicallyintheNZE.Demandincreasesalmostsixfoldto530Mtin2050,of
which half is used in heavy industry (mainly steel and chemicals production) and in the
transportsector; 30% is convertedinto otherhydrogen‐based fuels, mainly ammonia for
shippingandelectricitygeneration,synthetickeroseneforaviationandsyntheticmethane
blendedintogasnetworks;and17%isusedingas‐firedpowerplantstobalanceincreasing
electricity generation from solar PV and wind and to provide seasonal storage. Overall,
hydrogen‐basedfuels
5
accountfor13%ofglobalfinalenergydemandin2050(Figure3.8).
Ammoniaisusedtodayasfeedstockinthechemicalindustry,butintheNZEitisalsoused
asfuelinvariousenergyapplications,benefittingfromitslowertransportcostandhigher
energydensitythanhydrogen.Ammoniaaccountsforaround45%ofglobalenergydemand
forshippingin2050intheNZE.Co‐firingwithammoniaisalsoapotentialearlyoptionto
reduceCO
2
emissionsinexistingcoal‐firedpowerplants.Thetoxicityofammoniameansthat
itshandlingislikelytobelimitedtoprofessionallytrainedoperators,whichcouldrestrictits
potential.
 
5
Hydrogen‐basedfuelsaredefinedashydrogen,ammoniaaswellassynthetichydrocarbonfuelsproduced
fromhydrogenandCO
2
.
Chapter 3 | Sectoral pathways to net-zero emissions by 2050 109
3
Figure 3.8 Global production of hydrogen by fuel and hydrogen demand
by sector in the NZE
IEA.Allrightsreserved.
Hydrogen production jumps sixfold by 2050, driven by water electrolysis and natural gas
with CCUS, to meet rising demand in shipping, road transport and heavy industry
Note:RefiningCNR=hydrogenby‐productfromcatalyticnaphthareformingatrefineries.
Synthetickerosenemeetsaroundone‐thirdofglobalaviationfueldemandin2050inthe
NZE. Its manufacture at bioenergy‐fired power or biofuel production plants requires CO
2
capturedfromtheatmosphere.CO
2
fromthesesourcescanbeconsideredcarbonneutral,
asitresultsinnonetemissionswhenthefuelisused.Thereisscopefortheco‐production
of advanced liquid biofuels and synthetic liquid fuels from hydrogen and CO
2
, with the
integrationofthetwoprocessesreducingtheoverallliquidfuelproductioncosts.Alongside
syntheticliquidfuels,enoughsyntheticmethaneisproducedfromhydrogenandCO
2
in2050
tomeet10%ofdemandfornetworksuppliedgasinthebuildings,industryandtransport
sectors.
By 2050, hydrogen production in the NZE is almost entirely based on low‐carbon
technologies: water electrolysis accounts for more than 60% of global production, and
naturalgasincombinationwithCCUSforalmost40%.Globalelectrolysercapacityreaches
850gigawatts (GW) by 2030 and 3600GW by 2050, up from around0.3GWtoday.
Electrolysisabsorbscloseto15000terawatt‐hours(TWh),or20%ofglobalelectricitysupply
in2050,largelyfromrenewableresources(95%),butalsofromnuclearpower(3%)andfossil
fuelswithCCUS(2%).NaturalgasuseforhydrogenproductionwithCCUSis925bcmin2050,
oraround50%ofglobalnaturalgasdemand,with1.8GtCO
2
beingcaptured.
Scalingupdeploymentoftechnologiesandrelatedmanufacturingcapacitywillbecriticalto
reducingcosts.Waterelectrolysersareavailableonthemarket today and hydrogen
productionfromnaturalgaswithCCUShasbeendemonstratedatacommercialscale(there
aresevenplantsinoperationaroundtheworld).Thechoicebetweenthetwodependson
200
400
600
2020 2030 2040 2050
Mt
Fossil withCCUS
RefiningCNR Electricity
Hydrogenproduction
25%
50%
75%
Shipping Road
transport
Aviation Chemicals Ironand
steel
Syntheticfuels Ammonia Hydrogen
Shareofhydrogenfuelsbysectorin2050
IEA. All rights reserved.
110 International Energy Agency | Special Report
economicfactors,mainlythecostofnaturalgasandelectricity,andonwhetherCO
2
storage
isavailable.FornaturalgaswithCCUS,productioncostsintheNZEarearoundUSD1‐2per
kilogramme(kg)ofhydrogenin2050,withgascoststypicallyaccountingfor15‐55%oftotal
productioncosts. For waterelectrolysis, learning effects and economiesofscaleresultin
CAPEX cost reductions of 60% in the NZE by 2030 compared to 2020. Production cost
reductionshingeonloweringthecostoflow‐carbonelectricity,aselectricityaccountsfor
50‐85% of total production costs, depending on the electricity source and region. The
averagecostofproducinghydrogenfromrenewablesdropsintheNZEfromUSD3.5‐7.5/kg
todaytoaroundUSD1.5‐3.5/kgin2030andUSD1‐2.5/kgin2050–essentiallyaboutthe
sameasthecostofproducingwithnaturalgaswithCCUS.
Convertinghydrogenintootherenergycarriers,suchasammoniaorsynthetichydrocarbon
fuels,involvesevenhighercosts.Butitresultsinfuelsthatcanbemoreeasilytransported
and stored, and which are also often compatible with existing infrastructure or end‐use
technologies(asinthecaseofammoniaforshippingorsynthetickeroseneforaviation).For
ammonia, the additional synthesis step increases the production costs by around 15%
comparedwithhydrogen(mainlyduetoadditionalconversionlossesandequipmentcosts).
The relatively high cost of synthetic hydrocarbon fuels explains why their use is largely
restrictedtoaviationintheNZE,wherealternativelowcarbonoptionsarelimited.Synthetic
kerosene costs were USD300‐700/barrel in 2020: although these costs fall to
USD130‐300/barrelby2050intheNZEasthecostsofelectricityfromrenewablesandCO
2
feedstocks decline, the cost of synthetic kerosene remains far higher than the projected
USD25/barrelcostofconventionalkerosenein2050intheNZE.ThesupplyofCO
2
,captured
frombioenergyequippedwithCCUSordirectaircapture(DAC),neededtomakethesefuels
isarelevantcostfactor,accountingforUSD1570/barrelofthe cost of synthetic
hydrocarbonfuelsin2050.Closingthesecostgapsimpliespenaltiesforfossilkeroseneor
support measures for synthetic kerosene corresponding to a CO
2
priceof
USD250‐400/tonne.
Increasingglobaldemandforlow‐carbonhydrogenintheNZEprovidesameansforcountries
toexportrenewableelectricityresourcesthatcouldnototherwise be exploited. For
example, Chile and Australia announced ambitions to become major exporters in their
national hydrogen strategies. With declining demand for naturalgasintheNZE,gas
producingcountriescouldjointhismarketbyexportinghydrogenproducedfromnaturalgas
withCCUS.Long‐distancetransportofhydrogen,however,isdifficultandcostlybecauseof
itslowenergydensity,andcanaddaroundUSD1‐3/kgofhydrogentoitsprice.Thismeans
that, depending on each country’s own circumstances, producing hydrogen domestically
may be cheaper than importing it, even if domestic production costs from low‐carbon
electricity or natural gas with CCUS are relatively high. International trade nevertheless
becomesincreasinglyimportantintheNZE:aroundhalfofglobalammoniaandathirdof
syntheticliquidfuelsaretradedin2050.
Chapter 3 | Sectoral pathways to net-zero emissions by 2050 111
3
3.3.4 Keymilestonesanddecisionpoints
Table 3.1 Key milestones in transforming low-emissions fuels
Sector 2020 2030 2050
Bioenergy
Shareofmodernbiofuelsinmodernbioenergy
(excludingconversionlosses)
20% 45% 48%
Advancedliquidbiofuels(mboe/d) 0.1 2.7 6.2
Shareofbiomethaneintotalgasnetworks <1% 2% 20%
CO
2
capturedandstoredfrombiofuelsproduction(MtCO
2
) 1 150 625
Hydrogen
Production(MtH
2
) 87 212 528
ofwhich:low‐carbon(MtH
2
) 9 150 520
Electrolysercapacity(GW) <1 850 3585
Electricitydemandforhydrogen‐relatedproduction(TWh) 1 3850 14500
CO
2
capturedfromhydrogenproduction(MtCO
2
) 135 680 1800
Numberofexportterminalsatportsforhydrogenandammoniatrade 0 60 150
Note:mboe/d=millionbarrelsofoilequivalentperday;Mt=milliontonnes;H
2
=hydrogen.
Biofuels
Several sustainability frameworks considering net lifecycle GHG emissions and other
sustainabilityindicatorsexistindifferentregions,e.g.theRenewableEnergyDirectiveIIin
the European Union, RenovaBio in Brazil and the Low‐C Fuel Standards in California.
However, the scope, methodology and sustainability metrics of these frameworks differ.
Globalconsensus on a sustainability frameworkand indicatorswithinthe next fewyears
wouldhelpstimulateinvestment;thisshouldbeapriority.Suchaframeworkshouldcover
allformsofbioenergy(liquid,gaseousandsolid)andotherlow‐emissionsfuels,andshould
strive for continuous environmental performance improvement. Certification schemes
ideallyshouldbedevelopedinparallel.
Anotherearlypriorityisforgovernmentstoassessnationalsustainablebiomassfeedstock
potentialassoonaspossibletoestablishthequantitiesandtypesofwastes,residuesand
marginallandssuitableforenergycrops.Assessmentsshouldprovidethebasisfornational
roadmapsforallliquid andgaseousbiofuels,andstrategiesforlow‐emissionsfuels.Early
decisionswillbeneededinthiscontextabouthowtosupportthesustainablecollectionof
wastes and residues from the forestry, agriculture, animal and food industries and from
advancedmunicipalsolidwastesortingsystems:intheNZE,supportmeasuresareinplace
by2025.Measuresmightusefullyincludelow‐emissionsfuelsstandardsthatincentivisethe
useofbiofuelsasfeedstock.Internationalknowledge‐sharingwouldhelpwiththedesignof
suchmeasuresandassistefficientdisseminationofbestpracticesfromregionswithexisting
collection systems, e.g. for forestry residues in Nordic countries and used cooking oil
collectioninEurope,ChinaandSoutheastAsiacountries.
IEA. All rights reserved.
112 International Energy Agency | Special Report
Governments will also need to decide how best to support biogas installations and
distributioninordertomoveawayfromtraditionalusesofbiomassforcookingandheating
by 2030. Such practices remain widespread in some developing countries. They are best
tackledaspartofbroaderprogrammestopromotecleancookingalongsideimprovingaccess
toelectricityandLPG.
Decisionswillbeneededby2025onhowbesttocreatemarketsforsustainablebiofuelsand
closethecostgapbetweenbiofuelsandfossilfuels.Measureswillneedtoincentivisethe
rapid development and deployment of advanced liquid biofuel technologies in end‐use
sectors(particularlyheavy‐dutytrucking,shippingandaviation),usingmechanismssuchas
low‐carbonfuelstandards,biofuelmandatesandCO
2
removalcredits.Measuresthatcould
boost the scaling up of advanced biofuels production in the next four years include:
incentivesforco‐processingbio‐oilinexistingoilrefineriesorfullyconvertingoilrefineries
to biorefineries; retrofitting ethanol plants with CCUS; and integrating cellulosic ethanol
productionwithexistingethanolplants.
Newinfrastructurewillbeneededtoprovidefortheinjectionofmorebiomethaneintogas
networksandtotransportandstoretheCO
2
capturedfromethanolandbioFTbiofuelplants.
Governments should prioritise the co‐development of biogas upgrading facilities and
biomethaneinjectionsitesby2030,ensuringthatparticularattentionispaidtominimising
fugitive biomethane emissions from the supply chain. Where biomass availability allows,
governmentsmayseevalueinencouragingthedeploymentofbiofuelplantswithCCUSnear
existingindustrialhubswhereintegratedCCUSprojectsareplanned,suchastheHumber
regionintheUnitedKingdom.
Hydrogen‐basedfuels
Animmediatepriorityshouldbeforgovernmentstoassesstheopportunitiesandchallenges
of developing a low‐carbon hydrogenindustry as part of national hydrogenstrategies or
roadmaps.Decisionswillbeneededonwhethertoproducehydrogendomesticallyfromlow‐
carbonelectricityviawaterelectrolysisorfromgaswithCCUSoracombinationofboth,or
whethertorelyonimportedhydrogen‐basedfuels.Buildingtechnologyleadershipalongthe
hydrogensupplychaincouldhelpcreatejobsandstimulateeconomicgrowth.
Decisionswillbeneededduringthenextdecadeonhowbesttobringdownthecostsoflow‐
carbon hydrogen production. Switching existing hydrogen production in industry and oil
refiningfromunabatedfossilfuelstolow‐carbonhydrogenisonepossiblewaytorampup
low‐carbonhydrogenproductioninapplicationsthathavelargedemandalreadyavailable.
Financialsupportinstruments,suchascontractsfordifferences,couldhelptoreducethe
current cost gap of low‐carbon hydrogen production compared to existing unabated
productionfromfossilfuels.
Decisionswillalsobeneededonhowbesttoscaleuphydrogen.Industrialportscouldbea
goodstartingpoint,sincetheymayprovideaccesstolow‐carbonhydrogensupplyinthe
formofoffshorewindorCO
2
storage.Theyalsoofferscopetopromotenewportrelated
Chapter 3 | Sectoral pathways to net-zero emissions by 2050 113
3
usesforhydrogen,e.g.shippinganddeliverytrucks,andtheycouldbecomethefirstnodes
of an international hydrogen trade network. The establishment of hydrogen trade will
require the development of methodologies to determine the carbon footprint of the
different hydrogen production routes and the adoption of guaranteesoforiginand
certificationschemesforlow‐carbonhydrogen(andhydrogen‐basedfuels).
Blendinghydrogenintoexistinggasnetworksoffersanotherearlyavenuetoscaleuplow‐
carbon hydrogen production and trigger cost reductions. International harmonisation of
safetystandardsandnationalregulationsonallowedconcentrationsofhydrogeningasgrids
would help with this, as would the adoption of blending quotas or low‐emissions fuel
standards.
Repurposing existing gas pipelines, where technically feasible, with declining natural gas
demandandconnectinglargehydrogendemandhubstotransporthydrogencouldresultin
low cost and low regret opportunities to kick‐start the development of new hydrogen
infrastructure.DevelopingtheinfrastructureforhydrogenatthepacerequiredintheNZE
wouldinvolveconsiderableinvestmentrisksalongthevaluechainofproduction,transport
and demand ranging from hydrogen production technologies through to low‐emissions
electricity generation and CO
2
transport and storage. Governments and local authorities
could play an important role by co‐ordinating the planning processes among the various
stakeholders;directpublicinvestmentorpublic‐privatepartnershipscouldhelptodevelop
necessary shared infrastructure for hydrogen; and international co‐operation and cross‐
borderinitiativescouldhelptoshareinvestmentburdensandrisksandsofacilitatelarge‐
scaledeployments,asintheEUImportantProjectsofCommonEuropeanInterest.
3.4 Electricitysector
3.4.1 EnergyandemissionstrendsintheNet‐ZeroEmissionsScenario
TheNZEinvolvesbothasignificantincreaseinelectricityneeds–theresultofanincreasein
economicactivity,rapidelectrificationofend‐usesandexpansionofhydrogenproductionby
electrolysis – and a radical transformation in the way electricity is generated. Global
electricitydemandwas23230TWhin2020withanaveragegrowthrateof2.3%peryear
overthepreviousdecade.Itclimbsto60000TWhin2050intheNZE,anaverageincreaseof
3.2%peryear.
Emerging market and developing economies account for 75% of theprojectedglobal
increaseinelectricitydemandto2050(Figure3.9).Theirdemandincreasesbyhalfby2030
andtriplesby2050,drivenbyexpandingpopulationandrisingincomesandlivingstandards,
aswellnewsourcesofdemandlinkedtodecarbonisation.Inadvancedeconomies,electricity
demandreturnstogrowthafteradecade‐longlull,nearlydoublingbetween2020and2050,
drivenmostlybyend‐useelectrificationandhydrogenproduction.
IEA. All rights reserved.
114 International Energy Agency | Special Report
Figure 3.9 Electricity demand by sector and regional grouping in the NZE
IEA.Allrightsreserved.
Electrification of end-uses and hydrogen production raise electricity demand worldwide,
with a further boost to expand services in emerging market and developing economies
Thetransformationoftheelectricitysectoriscentraltoachievingnet‐zeroemissionsin2050.
Electricitygenerationisthesinglelargestsourceofenergyrelated CO
2
emissions today,
accounting for 36% of total energy‐related emissions. CO
2
emissions from electricity
generation worldwide totalled 12.3Gt in 2020, of which 9.1Gt was from coal‐fired
generation, 2.7Gt from gas‐fired plants and 0.6Gt from oil‐fired plants. In the NZE, CO
2
emissionsfromelectricitygenerationfalltozeroinaggregateinadvancedeconomiesinthe
2030s.Theyfalltozeroinemergingmarketanddevelopingeconomiesaround2040.
RenewablescontributemosttodecarbonisingelectricityintheNZE:globalgenerationfrom
renewablesnearlytriplesby2030andgrowseightfoldby2050(Figure3.10).Thisraisesthe
shareofrenewablesintotaloutputfrom29%in2020toover60%in2030andnearly90%in
2050.Solar PVandwind race ahead,becoming the leadingsources ofelectricity globally
before 2030: each generates over 23000TWh by 2050, equivalent to about 90% of all
electricityproducedintheworldin2020.PairingbatterystoragesystemswithsolarPVand
wind to improve power system flexibility and maintain electricity security becomes
commonplace in the late 2020s, complemented by demand response for short duration
flexibility and hydropower or hydrogen for flexibility across days or even seasons.
Hydropoweristhelargestlow‐carbonsourceofelectricitytodayandsteadilygrowsinthe
NZE,doublingby2050.Generationusingbioenergy–indedicatedplantsandasbiomethane
deliveredthroughgasnetworks–doublesto2030andincreasesnearlyfivefoldby2050.
10
20
30
40
2010 2020 2030 2040 2050
ThousandTWh
Industry Transport Buildings Hydrogensupply Districtheating Other
Advancedeconomies
2010 2020 2030 2040 2050
Emergingmarketanddevelopingeconomies
Chapter 3 | Sectoral pathways to net-zero emissions by 2050 115
3
Figure 3.10 Global electricity generation by source in the NZE
IEA.Allrightsreserved.
Solar and wind power race ahead, raising the share of renewables in total generation
from 29% in 2020 to nearly 90% in 2050, complemented by nuclear, hydrogen and CCUS
NuclearpoweralsomakesasignificantcontributionintheNZE,itsoutputrisingsteadilyby
40%to2030anddoublingby2050,thoughitsoverallshareofgenerationisbelow10%in
2050.Atitspeakintheearly2030s,globalnuclearcapacityadditionsreach30GWperyear,
five‐times the rate of the past decade. In advanced economies, lifetime extensions for
existingreactorsarepursuedinmanycountriesastheyareoneofthemostcost‐effective
sources of low‐carbon electricity (IEA, 2019), while new construction expands to about
4.5GW per year on average from 2021 to 2035, with an increasing emphasis on small
modularreactors.Despitetheseefforts,thenuclearshareoftotalgenerationinadvanced
economiesfallsfrom18%in2020to10%in2050.Two‐thirdsofnewnuclearpowercapacity
intheNZEisbuiltinemergingmarketanddevelopingeconomiesmainlyintheformoflarge
scale reactors, where the fleet of reactors quadruples to 2050.Thisraisestheshareof
nuclearinelectricitygenerationinthosecountriesfrom5%in2020to7%in2050(aswellas
nuclearmeeting4%ofcommercialheatdemandin2050).
Nuclearpowertechnologieshaveadvancedinrecentyears,withseveralfirst‐of‐a‐kindlarge‐
scalereactorscompletedthatincludeenhancedsafetyfeatures.Whileprojectshavebeen
completed on schedule in China, Russia and the United Arab Emirates, there have been
substantialdelaysandcostoverrunsinEuropeandtheUnitedStates.Smallmodularreactors
and other advanced reactor designs are moving towards full‐scale demonstration, with
scalabledesigns,lowerupfrontcostsandthepotentialtoimprovetheflexibilityofnuclear
powerintermsofbothoperationsandoutputs,e.g.electricity,heatorhydrogen.
Retrofittingcoal‐ and gas‐firedcapacitywithCCUSorco‐firingwithhydrogen‐basedfuels
enablesexistingassetstocontributetothetransitionwhilecuttingemissionsandsupporting
electricity security. The best opportunities for CCUS are at large, young facilities with
5
10
15
20
25
2010 2020 2030 2040 2050
ThousandTWh
20%
40%
60%
80%
100%
2020 2030 2050
Oil
Unabatednaturalgas
Unabatedcoal
FossilfuelswithCCUS
Hydrogenbased
Nuclear
Otherrenewables
Hydropower
Wind
SolarPV
IEA. All rights reserved.
116 International Energy Agency | Special Report
available space to add capture equipment and in locations with CO
2
storageoptionsor
demandforuse.OpportunitiesareconcentratedinChinaforcoal‐firedpowerplantsandthe
UnitedStatesforgas‐firedcapacity.Whiletheyprovidejust2%oftotalgenerationfrom2030
to2050intheNZE,retrofittedplantscaptureatotalof15GtCO
2
emissionsovertheperiod.
Carboncapturetechnologiesremainatanearlystageofcommercialisation.Twocommercial
powerplantshavebeenequippedwithCCUSoverthepastfiveyears,andtherearecurrently
18CCUSpowerprojectsindevelopmentworldwide.Completingtheseprojectsinatimely
manner and driving down costs through learning‐by‐doing will becriticaltofurther
expansion.Analternativewouldbetoretrofitexistingcoal‐andgas‐firedpowerplantsto
co‐fire high shares of hydrogen‐based fuels. In the NZE, hydrogen‐based fuels generate
900TWh of electricity in 2030 and 1700TWh in 2050 in this way (about 2.5% of global
generationinbothyears).Alarge‐scale(1GW)demonstrationprojecttoco‐firewith20%
ammonia is underway in 2021, with aims to move towards ammonia‐only combustion.
Manufacturershavesignalledthatfuturegasturbinedesignswillbecapableofco‐firinghigh
sharesofhydrogen.Whiletheinvestmentneededtoco‐firehydrogen‐basedfuelslooksto
bemodest,relativelyhighfuelcostspointtotargetedapplicationstosupportpowersystem
stabilityandflexibilityratherthanbulkpower.
TheglobaluseofunabatedfossilfuelsinelectricitygenerationissharplyreducedintheNZE.
Unabatedcoal‐firedgenerationiscutby70%by2030,includingthephase‐outofunabated
coalinadvancedeconomies,andphasedoutinallotherregionsby2040.Large‐scaleoil‐fired
generationisphasedoutinthe2030s.Generationusingnaturalgaswithoutcarboncapture
risesinthenearterm,replacingcoal,butstartsfallingby2030andis90%lowerby2040
comparedwith2020.
Theelectricitysectoristhefirsttoachievenet‐zero emissionsmainlybecauseofthelow
costs,widespreadpolicysupportandmaturityofanarrayofrenewableenergytechnologies.
SolarPVisfirstamongthem:itisthecheapestnewsourceofelectricityinmostmarketsand
haspolicysupportinmorethan130countries.Onshorewindisalsoamarket‐readylowcost
technologythatiswidelysupportedandcanbescaledupquickly,rivallingthelowcostsof
solar PV where conditions are good, though it faces public opposition and extensive
permittingandlicensingprocessesinseveralmarkets.Offshorewindtechnologyhasbeen
maturingrapidlyinrecentyears;itsdeploymentispoisedtoaccelerateinthenearterm.The
currentfocusisonfixed‐bottominstallations,butfloatingoffshorewindstartstomakea
majorcontributionfromaround2030intheNZE,helpingtounlocktheenormouspotential
thatexistsaroundtheworld.Hydropower,bioenergyandgeothermaltechnologiesarewell
established, mature and flexible renewable energy sources. As dispatchable generating
options,theywillbecriticaltoelectricitysecurity,complementedbybatteries,whichhave
seensharpcostreductions,haveproventheirabilitytoprovidehigh‐valuegridservicesand
canbebuiltinamatterofmonthsinmostlocations.Concentratingsolarandmarinepower
arelessmaturetechnologies,butinnovationcouldseethemmakeimportantcontributions
inthelongterm.
Chapter 3 | Sectoral pathways to net-zero emissions by 2050 117
3
3.4.2 Keymilestonesanddecisionpoints
Table 3.2 Key milestones in transforming global electricity generation
Category
Decarbonisationof
electricitysector
Advancedeconomiesinaggregate:2035.
Emergingmarketanddevelopingeconomies:2040.
Hydrogen‐based
fuels
Startretrofittingcoal‐firedpowerplantstoco‐firewithammoniaandgasturbines
toco‐firewithhydrogenby2025.
Unabated
fossilfuel
Phaseoutallsubcriticalcoal‐firedpowerplantsby2030(870GWexistingplants
and14GWunderconstruction).
Phaseoutallunabatedcoal‐firedplantsby2040.
Phaseoutlargeoil‐firedpowerplantsinthe2030s.
Unabatednaturalgas‐firedgenerationpeaksby2030andis90%lowerby2040.
Category 2020 2030 2050
Totalelectricitygeneration(TWh) 26800 37300 71200
Renewables
Installedcapacity(GW) 2990 10300 26600
Shareintotalgeneration 29% 61% 88%
ShareofsolarPVandwindintotalgeneration 9% 40% 68%
Carboncapture,utilisationandstorage(CCUS)generation(TWh)
CoalandgasplantsequippedwithCCUS 4 460 1330
BioenergyplantswithCCUS 0 130 840
Hydrogenandammonia
Averageblendinginglobalcoal‐firedgeneration(withoutCCUS) 0% 3% 100%
Averageblendinginglobalgas‐firedgeneration(withoutCCUS) 0% 9% 85%
Unabatedfossilfuels
Shareofunabatedcoalintotalelectricitygeneration 35% 8% 0.0%
Shareofunabatednaturalgasintotalelectricitygeneration 23% 17% 0.4%
Nuclearpower 2016‐20 2021‐30 2031‐50
Averageannualcapacityadditions(GW) 7 17 24
Infrastructure
ElectricitynetworksinvestmentinUSDbillion(2019) 260 820 800
Substationscapacity(GVA) 55900 113000 290400
Batterystorage(GW) 18 590 3100
PublicEVcharging(GW) 46 1780 12400
Note:GW=gigawatts;GVA=gigavoltamperes.
TransformingtheelectricitysectorinthewayenvisionedintheNZEinvolveslargecapacity
additionsforalllow‐emissionsfuelsandtechnologies.Globalrenewablescapacitymorethan
triplesto2030andincreasesninefoldto2050.From2030to2050,thismeansaddingmore
than600GWofsolarPVcapacityperyearonaverageand340GWofwindcapacityperyear
includingreplacements(Figure3.11),whileoffshorewindbecomesincreasinglyimportant
IEA. All rights reserved.
118 International Energy Agency | Special Report
overtime(over20%oftotalwindadditionsfrom2021to2050,comparedwith7%in2020).
The annual deployment of battery capacity in the electricity sectorneedstoscaleupin
parallel,from3GWin2019to120GWin2030andover240GWin2040.Retrofittingexisting
coal‐andgas‐firedpowerplantsalsoneedstogetunderway.
Figure 3.11
Solar PV and wind installed capacity in the NZE
IEA.Allrightsreserved.
Solar PV and wind need to scale up rapidly to decarbonise electricity,
with total solar PV capacity growing 20-fold and wind 11-fold by 2050
Figure 3.12 Global investment in electricity networks in the NZE
IEA.Allrightsreserved.
Electricity network investment triples to 2030 and remains elevated to 2050,
meeting new demand, replacing ageing infrastructure and integrating more renewables
4000
8000
12000
16000
2010 2020 2030 2040 2050
GW
Emergingmarketanddevelopingeconomies Advancedeconomies
SolarPV
2010 2020 2030 2040 2050
Wind
300
600
900
1200
2020 2030 2040 2050
BillionUSD(2019)
Gridinvestment
25%
50%
75%
100%
2021‐30 2031‐40 2041‐50
Replacement
Renewables
Increased
demand
Driverforgridinvestment
Chapter 3 | Sectoral pathways to net-zero emissions by 2050 119
3
Investment in electricity networks will becrucial to achieving this transformation. Global
electricity networks that took over 130years to build need to more than double in total
lengthby2040andincreasebyanother25%by2050.Totalgridinvestmentneedstoriseto
USD820billionby2030,andUSD1trillionin2040,beforefallingbackafterelectricityisfully
decarbonisedandthegrowthofrenewablesslowstomatchdemandgrowth(Figure3.12).
Replacingageinginfrastructureisanimportantpartofnetworkinvestmentthroughto2050
intheNZE.
Governments face several key decisions in the electricity sectoriftheyaretofollowthe
pathwaytonet‐zeroemissionsby2050envisionedintheNZEparticularlyabouthowtobest
useexistingpowerplants.Forretrofitsofcoalorgasfiredcapacity, either with carbon
captureorco‐firingwithhydrogen‐basedfuels(orfullconversion),decisionsareneededto
support first‐of‐a‐kind projects before 2030 before widespread retirement of unabated
plantsbecomesnecessary.Forotherfossilfuelpowerstations,decisionsaboutphaseouts
are needed. Coal‐fired power plants should be phased out completely by 2040 unless
retrofitted,startingwiththeleast‐efficientdesignsby2030(Figure3.13).Thiswouldrequire
shutting870GWofexistingsubcriticalcoalcapacityglobally(11%ofallpowercapacity)and
internationalcollaborationtofacilitatesubstitutes.By2040,alllarge‐scaleoil‐firedpower
plants should be phased out. Natural gas‐fired generation remains an important part of
electricitysupplythroughto2050,butstronggovernmentsupportwillbeneededtoensure
thatCCUSisdeployedsoonandonalargescale.
Figure 3.13
Coal-fired electricity generation by technology in the NZE
IEA.Allrightsreserved.
Coal-fired power accounted for 27% of global energy CO
2
emissions in 2020, and in the
NZE, all subcritical plants are phased out by 2030 and all plants without CCUS by 2040
Notes:APC=AnnouncedPledgesCase;IGCC=integratedgasification combined‐cycle. Ammonia includes
co‐firingandfullconversionofcoalplants.
2
4
6
8
10
2010 2020 2030 2040 2050
ThousandTWh
EquippedwithCCUS
Ammonia
Combinedheatandpower
Ultra‐supercriticalandIGCC
Supercritical
Subcritical
Generationfromcoal‐fired
plantsintheAPC
IEA. All rights reserved.
120 International Energy Agency | Special Report
Thepathtonet‐zeroemissionscouldbefacilitatedbyearlygovernmentactiontohelpmove
severaltechnologiesthatprovidepowersystemflexibilitythroughthedemonstrationphases
andbringthemtomarket.Expandingthesetofenergystoragetechnologiestocomplement
batteriesandaddressingemergingneedsforlongerdurationseasonalstoragewouldbeof
particularvalue.Technicalsolutionstosupportthestabilityofpowergridswithhighshares
ofsolarandwindwouldalsobenefitfromresearchanddevelopment(R&D)support.
Therearethreeimportantsetsofdecisionstobemadeconcerningnuclearpower:lifetime
extensions; pace of new construction; and advances in nuclear power technology. In
advanced economies, decisions need to be made about new construction and the large
numberofnuclearpowerplantsthatmayberetiredoverthenextdecadeabsentactionto
extend their lifetimes and make the required investment. Without further lifetime
extensions and new projects beyond those already under construction, nuclear power
output in advanced economies will decline by two‐thirds over the next two decades
(IEA,2019).Inemergingmarketanddevelopingeconomies,therearedecisionstobemade
aboutthepaceofnewnuclearpowerconstruction.From2011to2020,anaverageof6GW
of new nuclear capacity came online each year. By 2030, the rate of new construction
increasesto24GWperyearintheNZE.Thethirdsetofdecisionsconcernstheextentof
governmentsupportforadvancednucleartechnologies,particularlythoserelatedtosmall
modularreactorsandhigh‐temperaturegasreactors,bothofwhichcanexpandmarketsfor
nuclearpowerbeyondelectricity.
Figure 3.14
Additional global alternative capacity needed in a Low Nuclear
and CCUS Case
IEA.Allrightsreserved.
Sharply reducing the roles of nuclear power and carbon capture would require even faster
growth in solar PV and wind, making achieving the net zero goal more costly and less likely
Note:TheLowNuclearandCCUSCaseassumesthatglobalnuclearpoweroutputisabout60%lowerin2050
thanintheNZEduetonoadditionallifetimeextensionsornewnuclearprojectsinadvancedeconomiesand
noexpansionofthecurrentpaceofconstructioninemergingmarketanddevelopingeconomies,andthatthe
amountofcoal‐andgas‐firedcapacityequippedwithCCUSis99%lowerthanintheNZE.
‐1000
0
1000
2000
3000
2025 2030 2035 2040 2045 2050
GW
Otherdispatchable
Batteries
SolarPV
Wind
CCUS
Nuclear
Chapter 3 | Sectoral pathways to net-zero emissions by 2050 121
3
FailingtotaketimelydecisionsonnuclearpowerandCCUSwouldraisethecostsofanet‐
zeroemissionspathwayandaddtotheriskofnotmeetingthegoalbyplacinganadditional
burdenonwindandsolartoscaleupevenmorequicklythanintheNZE(Figure3.14).Ina
LowNuclearandCCUSCase,weassumethatglobalnuclearpoweroutputis60%lowerin
2050thanintheNZEasaresultofnoadditionalnuclearlifetimeextensionsornewprojects
inadvancedeconomiesandnoexpansionofthecurrentpaceofconstructioninemerging
market and developing economies, and that only the announced CCUS projects are
completed(representing1%oftheCCUScapacityaddedintheNZE).
Ouranalysisindicatesthattheburdenofreplacingthosesourcesoflow‐carbongeneration
wouldfallmainlyonsolarPVandwindpower,callingfor2400GWmorecapacitythanin
the NZE – an amount far exceeding their combined global capacity in operation in 2020
(Figure3.14).Therewouldalsobeaneedforabout480GWofbatterycapacityaboveand
beyondthe3100GWdeployedintheNZE,plusmorethan300GWofotherdispatchable
capacitytomeetdemandinallseasonsandensuresystemadequacy.Thiswouldcallforan
additionalUSD2trillion investmentin powerplants and relatedgridassets(netoflower
investmentinnuclearandCCUS).Takingaccountofavoidedfuelcosts,theestimatedtotal
additionalcostofelectricitytoconsumersbetween2021and2050isUSD260billion.
3.5 Industry
3.5.1 EnergyandemissiontrendsintheNet‐ZeroEmissionsScenario
AsthesecondlargestglobalsourceofenergysectorCO
2
emissions, industry has a vital
contributiontomakeinachievingthenetzerogoal.IndustrialCO
2
emissions
6
(includingfrom
energyuseandproductionprocesses)totalledabout8.4Gtin2020.Advancedeconomies
accountedforaround20%andemergingmarketanddevelopingeconomiesforaround80%,
althoughcomplexglobalsupplychainsfortheproductionofmaterialsandmanufacturing
meanthatadvancedeconomiesgenerallyconsumefarmorefinished goods than they
produce.
Three heavy industries – chemicals, steel and cement – account for nearly 60% of all
industrialenergyconsumptionandaround70%ofCO
2
emissionsfromtheindustrysector.
Production is highly concentrated in emerging market and developing economies, which
accountfor7090%ofthecombinedoutputofthesecommodities(Figure3.15).Chinaalone
wasresponsibleforalmost60%ofbothsteelandcementproductionin2020.Thesebulk
materials are essential inputs to our modern way of life, with few cost‐competitive
substitutes;thechallengeistocarryonproducingthesematerialswithoutemittingCO
2
.
TheoutlookforglobalmaterialsdemandintheNZEisoneofplateausandsmallincreases.
Thisisinstarkcontrastwiththegrowthseenduringthelasttwodecadeswhenglobalsteel
 
6
AllCO
2
emissionsin thissectionrefer todirectCO
2
emissionsfrom the industrysectorunless otherwise
specified.
IEA. All rights reserved.
122 International Energy Agency | Special Report
demandroseby2.1‐times,cementby2.4‐timesandplastics(akeygroupofmaterialoutputs
from the chemical sector) by 1.9‐times in response to global economic and population
expansion. When economies are developing, per capita material demand tends to rise
rapidlytobuildupstocksofgoodsandinfrastructure.Aseconomiesmature,futuredemand
stemsprimarilyfromtheneedtorefurbishandreplacethesestocks,thelevelsofwhichtend
tosaturate.IntheNZE,flatteningorevendecliningdemandinmanycountriesaroundthe
worldleadstoslowerglobaldemandgrowth.SomecountriessuchasIndiaseehighergrowth
insteelandcementproduction,whileproductioninChinadeclinesconsiderablyfollowingits
industrialboomperiodaftertheturnofthemillennium.
Figure 3.15
Global CO
2
emissions from industry by sub-sector in the NZE
IEA.Allrightsreserved.
The majority of residual emissions in industry in 2050 come
from heavy industries in emerging market and developing economies
Note:Otherincludestheproductionofaluminium,paper,othernon‐metallicmineralsandothernon‐ferrous
metals,andaseriesoflightindustries.
Certainsegmentsofmaterialdemandincreaserapidlytosupporttherequiredexpansionof
energy‐related infrastructure in the NZE, notably renewable electricity generation and
transportinfrastructure.Theadditionalinfrastructurerequiredforthesetwosegmentsby
2050 relative to today alone contributes roughly 10% of steel demand in 2050. But co‐
ordinated cross‐sectoral strategies, including modal shifts in transport and building
renovation,aswellasotherchanges in design, manufacturing methods, construction
practicesandconsumerbehaviour,morethanoffsetthisincrease.Overall,globaldemand
for steel in 2050is 12% higher than today, primary chemicals is 30% higher and cement
demandisbroadlyflat.
CO
2
emissionsfromheavyindustry declineby20%by2030and 93%by2050intheNZE.
Optimisingtheoperationalefficiencyofequipment,adoptingthebestavailabletechnologies
fornewcapacityadditionsandmeasurestoimprovematerialefficiencyplayanimportant
50
100
150
200
2
4
6
8
2020 2030 2040 2050 2020 2030 2040 2050
Index(2020=100)
GtCO
2
Chemicals Steel Cement Other Materialproduction(rightaxis)
Advancedeconomies
Emergingmarket anddevelopingeconomies
Chapter 3 | Sectoral pathways to net-zero emissions by 2050 123
3
partinthis.However,therearelimitstohowmuchemissionscan be reduced by these
measures. Almost 60% of emissions reductions in 2050 in the NZE are achieved using
technologiesthatareunderdevelopmenttoday(largeprototypeordemonstrationscale)
(Figure3.16).
Figure 3.16
Global CO
2
emissions in heavy industry and reductions by
mitigation measure and technology maturity category in the NZE
IEA.Allrightsreserved.
An array of measures reduces emissions in heavy industry,
with innovative technologies like CCUS and hydrogen playing a critical role
Hydrogen and CCUS technologies together contribute around 50% of the emissions
reductionsinheavyindustryin2050intheNZE.Thesetechnologiesenabletheprovisionof
largeamountsofhigh‐temperatureheat,whichinmanycasescannotbeeasilyprovidedby
electricitywithcurrenttechnologies,andhelptoreduceprocessemissionsfromthechemical
reactionsinherentinsomeindustrialproduction.Bioenergyalsomakesacontributionina
widearrayofindustrialapplications.
Asidefromtheneedforhigh‐temperatureheatandprocessemissions,twofactorsexplain
theslowerpaceofemissionsreductionsinheavyindustriesrelativetootherareasofthe
energysystem. First, theease with which many industrialmaterials andproducts can be
tradedgloballymeansthatmarketsarecompetitiveandmarginsarelow.Thisleaveslittle
roomtoabsorbadditionalcostsstemmingfromtheadoptionofmoreexpensiveproduction
pathways.Itwilltaketimetodeveloprobustglobalco‐operationandtechnologytransfer
frameworksordomesticsolutionstoenablealevelplayingfield for these technologies.
Second,heavyindustriesusecapital‐intensiveandlong‐livedequipment,whichslowsthe
deployment of innovative low‐emission technologies. Capacity additions in the period to
2030–beforealarge‐scaleroll‐outofinnovativeprocessescantakeplace–largelyexplain
thepersistenceofindustrialemissionsin2050,morethan80% ofwhichareinemerging
market and developing economies. Strategically timed investmentinlowcarbon
technologiescouldhelpminimiseearlyretirements(Box3.1).
2
4
6
8
2020 2050 2020 2050
GtCO
2
Activity
CCUS
Energyefficiency
Otherfuelshifts
Electrification
Otherrenewables
Bioenergy
Hydrogen
Materialefficiency
Prototype
Demonstration
Marketuptake
Mature
‐95%
+39%
Maturity
Measure
Mitigationmeasures
Maturityofmeasures
IEA. All rights reserved.
124 International Energy Agency | Special Report
Box 3.1 Investment cycles in heavy industry
Forheavyindustry,theyear2050isjustoneinvestmentcycleaway.Averagelifetimesof
emissions‐intensiveassetssuchasblastfurnacesandcementkilnsarearound40years.
Afterabout25yearsofoperation,however,plantsoftenundergoamajorrefurbishment
toextendtheirlifetimes.
Thechallengeistoensurethatinnovativenear‐zeroemissionsindustrialtechnologies
thatareatlargeprototypeanddemonstrationstagetodayreachmarketswithinthenext
decade,whenaround30%ofexistingassetswillhavereached25yearsofageandthus
faceaninvestmentdecision.Iftheseinnovativetechnologiesarenotready,ornotused
even if ready, this would have amajornegativeimpactonthepace of emissions
reductionsor riskanincrease in stranded assets (Figure3.17).Conversely, if theyare
ready,andifexistingplantsareretrofitorreplacedwiththematthe25‐yearinvestment
decisionpoint,thiscouldreduceprojectedcumulativeemissionsto2050fromexisting
heavyindustryassetsbyaround40%.Thecriticalwindowofopportunityfromnowto
2030shouldnotbemissed.
Figure 3.17 CO
2
emissions from existing heavy industrial assets in the NZE
IEA.Allrightsreserved.
Intervening at the end of the next 25-year investment cycle could help unlock
60 Gt CO
2
, around 40% of projected emissions from existing heavy industry assets
Theenergy mix inindustry changes radicallyin the NZE.The share offossil fuels intotal
energyusedeclinesfromaround70%todayto30%in2050.Thevastmajorityoffossilfuels
stillbeingusedthenareinheavyindustries,mainlyaschemicalfeedstock(50%)orinplants
equipped with CCUS (around 30%). Electricity is the dominant fuel in industrial energy
demandgrowth,withitsshareoftotalindustrialenergyconsumptionrisingfrom20%in2020
to45%in2050.Some15%ofthiselectricityisusedtoproducehydrogen.Bioenergyplaysan
importantrole,contributing15%oftotalenergyusein2050,butsustainablesuppliesare
2
4
6
2020 2030 2040 2050
GtCO
2
Existing
infrastructure:
Typicallifetime
Existinginfrastructure:25‐year
investmentcycle
NZE(heavyindustry)
Chapter 3 | Sectoral pathways to net-zero emissions by 2050 125
3
limited,anditisalsoinhighdemandinthepowerandtransportsectors.Renewablesolar
andgeothermaltechnologiestoprovideheatmakeasmallbutfastgrowingcontribution
(Figure3.18).
Figure 3.18
Global final industrial energy demand by fuel in the NZE
IEA.Allrightsreserved.
Fossil fuel use in industry is halved by 2050, replaced primarily by electricity and bioenergy
Notes:Industrialenergyconsumptionincludeschemicalfeedstockandenergyconsumedinblastfurnacesand
cokeovens.Hydrogenreferstoimportedhydrogenandexcludescaptivehydrogengeneration.Electricityfor
hydrogenreferstoelectricityusedintheproductionofcaptivehydrogenviaelectrolysis.
Chemicalsproduction
IntheNZE,emissionsfromthechemicalssubsectorfallfrom1.3Gtin2020to1.2Gtin2030
andaround65Mtin2050.Theshareoffossilfuelsintotalenergyusefallsfrom83%in2020
(mostlyoilandnaturalgas),to76%in2030and61%in2050.Oilremainsthelargestfuel
usedinprimarychemicalsproductionby2050intheNZE,alongwithsmallerquantitiesof
gasandcoal.
Technologies that are currently available on the market accountforalmost80%ofthe
emissionssavingsachievedgloballyinthechemicalindustryby2030intheNZErelativeto
today. They include recycling and re‐use of plastics and more efficient use of nitrogen
fertilisers,whichreducethedemandforprimarychemicals,andmeasurestoincreaseenergy
efficiency.Beyond2030,thebulkofemissionsreductionsresultfromtheuseoftechnologies
whoseintegrationinchemicalprocessesisunderdevelopmenttoday,includingcertainCCUS
applicationsandelectrolytichydrogengenerateddirectlyfromvariablerenewableelectricity
(Figure3.19). CCUS‐equipped conventional routes and pyrolysis technologiesaremost
competitiveinregionswithaccesstolowcostnaturalgas,whileelectrolysisisthefavoured
optioninregionswherethedeploymentofCCUSisimpededbyalackofinfrastructureor
publicacceptance.
20%
40%
60%
80%
100%
2020 2030 2040 2050
Coal CoalwithCCUS Oil Naturalgas
NaturalgaswithCCUS Electricity Electricityforhydrogen Heat(imported)
Bioenergyandwaste Otherrenewables Hydrogen(imported)
Totalindustry
2020 2030 2040 2050
Heavyindustry
IEA. All rights reserved.
126 International Energy Agency | Special Report
Figure 3.19 Global industrial production of bulk materials by production
route in the NZE
IEA.Allrightsreserved.
Near-zero emissions routes dominate cement, primary steel and chemicals
production by 2050, with key roles for CCUS and hydrogen-based technologies
Notes:CCUS=carboncapture,utilisationandstorage.Chemicalsreferstotheproductionofprimarychemicals
(ethylene,propylene,benzene,toluene,mixedxylenes,ammoniaandmethanol).Steelreferstoprimarysteel
production. Other includes innovative processes that utilise bioenergy and directly electrify production.
Hydrogen‐basedreferstoelectrolytichydrogen.Fossilfuel‐basedhydrogenwithCCUSisincludedintheCCUS‐
equippedcategory.
Ironandsteelproduction
IntheNZE,globalCO
2
emissionsfromtheironandsteelsubsectorfallfrom2.4Gtin2020
to1.8Gtin2030and0.2Gtin2050,astheunabateduseoffossilfuelsfallssharply.Their
shareoftheoverallfuelmixdropsfrom85%todaytojustover 30% in 2050. The steel
industryremainsoneofthelastsectorsusingsignificantamountsofcoalin2050,primarily
duetoitsimportanceasachemicalreductionagent,albeitmostlyinconjunctionwithCCUS.
TheNZEseesaradicaltechnologicaltransformationoftheironandsteelsub‐sectorbased
largelyonamajorshiftfromcoaltoelectricity.By2050,electricityandothernon‐fossilfuels
accountfornearly70%offinalenergydemandinthesector,upfromjust15%in2020.This
shift is driven by technologiessuch as scrap‐based electric arc furnaces (EAF), hydrogen‐
based direct reduced iron (DRI) facilities, iron ore electrolysis and the electrification of
ancillaryequipment.Theshareofcoalintotalenergyusedropsfrom75%in2020to22%by
2050intheNZE,ofwhich90%isusedinconjunctionwithCCUS.
Technologiesthatarecurrentlyonthemarketdeliveraround85%ofemissionssavingsin
steelproductionto2030.Theyincludematerialandenergyefficiencymeasuresandamajor
increaseinscrap‐basedproduction–whichrequiresonlyaroundone‐tenthoftheenergyof
primarysteelproduction–drivenprimarilybyincreasedscrapavailabilityasmoreproducts
reachtheir end‐of‐life. Partial hydrogen injection into commercial blastfurnaces and DRI
25%
50%
75%
100%
2020 2030 2050 2020 2030 2050 2020 2030 2050
Conventionalroutes
Other
Hydrogen‐based
CCUS‐equipped
Chemicals Steel Cement
Innovativeroutes
Chapter 3 | Sectoral pathways to net-zero emissions by 2050 127
3
furnacesgainpaceinthemid‐2020s,buildingonpilotprojectstestingthepracticetoday.
After2030,thebulkofemissionreductionscomefromtheuseoftechnologiesthatareunder
development, including hydrogen‐based DRI and iron ore electrolysis. Several
CCUS‐equippedprocesstechnologiesaredeployedinparallel,includinginnovativesmelting
reduction, natural gas‐based DRI production (particularly in regions with low natural gas
prices)andinnovativeblastfurnaceretrofitarrangementsinregionswithrelativelyyoung
plants.
Cementproduction
Producingatonneofcementtodaygeneratesaround0.6tonnesCO
2
onaverage,two‐thirds
ofwhichareprocessemissionsgeneratedfromcarbonreleasedfromtherawmaterialsused.
Fossilfuels–mostlycoalplussomepetroleumcoke–accountfor90%ofthermalenergy
needs.
Increasedblendingofalternativematerialsintocementtoreplaceaportionofclinker(the
active and most emissions‐intensive ingredient), lower demand for cement and energy
efficiency measures deliver around 40% of the emissions savings in 2030 compared with
2020.Throughuseofblendedcements,theglobalclinker‐to‐cementratiodeclinesfrom0.71
in2020to0.65in2030.Theratiocontinuestodeclineafter2030,butmoreslowly,reaching
0.57 in 2050 (blended cements could reach a clinker‐to‐cement ratio as low as 0.5, but
marketapplicationpotentialdependsonregionalcontexts).Limestoneandcalcinedclayare
themain alternativematerials usedin blendedcements by 2050.Since0.5isthelowest
technicallyachievableclinker‐to‐cementratio,othermeasuresareneededtoachievedeeper
emissionreductions.
After2030intheNZE,thebulkofemissionsreductionscomefromtheuseoftechnologies
that are under development today. CCUS is the most important, accounting for 55% of
reductionsin2050relativetotoday.Inmanycases,itismorecosteffectiveintheNZEto
applyCCUStofossilfuelcombustionemissionsthantoswitchto zero‐emissions energy
sources.Coaluseiseliminatedfromcementproductionby2050,whennaturalgasaccounts
forabout40%ofthermalenergy(upfrom15%today),biomassandrenewablewastefora
further35%(upfromlessthan5%today),hydrogenanddirectelectrificationforjustabout
15%, and oil products and non‐renewable waste for the remainder. Constraints on the
availabilityofsustainablebiomasssuppliespreventitfromclaimingahighershare.Direct
electrificationofcementkilnsisatthesmallprototypestagetoday,andsoonlystartstobe
deployedafter2040onasmallscale.Fromthe2040s,hydrogenprovidesaround10% of
thermalenergyneedsincementkilns,althoughblendingofsmallamountsbeginsearlier.
Innovativetypesofcementbased onalternativebindingmaterialsthatlimitoravoidthe
generationofprocessemissions,andevenenableCO
2
captureduringthecuringprocess,are
eitherstillatmuchearlierstagesofdevelopmentrelativetootheroptionslikeCCUS,orhave
limitedapplicability.
IEA. All rights reserved.
128 International Energy Agency | Special Report
Box 3.2 What about other industry sub-sectors?
Steel,cementandchemicalsarenottheonlyoutputsfromtheindustrysector.Italso
includes other energy‐intensive sub‐sectors such as aluminium, paper, other non‐
metallic minerals and non‐ferrous metals, as well as light industries that produce
vehicles,machinery,food,timber,textilesandotherconsumergoods,togetherwiththe
energyconsumedinconstructionandminingoperations.
Emissionsfromthelightindustriesdeclinebyaround30%by2030andaround95%by
2050intheNZE.Incontrasttotheheavyindustries,mostofthetechnologiesrequired
fordeepemissionreductionsinthesesub‐sectorsareavailableonthemarketandready
todeploy.Thisisinpartbecausemorethan90%oftotalheatdemandislow/medium‐
temperature,whichcanbemorereadilyandefficientlyelectrified.
Figure 3.20 Share of heating technology by temperature level in light
industries in the NZE
IEA.Allrightsreserved.
The share of electricty in satisfying heat demand for light industries rises
from less than 20% today to around 40% in 2030 and about 65% in 2050
Notes:Lightindustriesexcludesnon‐specifiedindustrialenergyconsumption.Low/medium‐temperature
heatcorrespondsto0‐400°Candhigh‐temperatureheatto>400°C.Otherheatsourcesincludessolar
thermalandgeothermalheaters,aswellasimportedheatfromthepowerandfueltransformationsector.
Electricityaccountsforaround40%ofheatdemandby2030andabout65%by2050.For
low‐(<100°C)andsomemedium‐(100‐400°C)temperatureheat,electrificationincludes
animportantroleforheat pumps(accountingforabout30%oftotalheatdemand in
2050).IntheNZE,around500MWofheatpumpsneedtobeinstalledeverymonthover
thenext30years.Alongwithelectrification,therearesmallerrolesfor hydrogen and
bioenergyforhigh‐temperatureheat(>400°C),accountingforaround20%andaround
15%respectivelyoftotalenergydemandin2050(Figure3.20).Therateofelectrolyser
capacitydeploymentismuchlowerthanheavyindustries,buttheunitsizeswillalsobe
25% 50% 75% 100%
2050
2030
2020
2050
2030
2020
2050
2030
2020
Fossilfuelheater
Biomassheater
Electricheater
Hydrogenheater
Heatpump
Otherheatsources
Miningandconstruction
Foodandtobacco
Machinery
Textileandleather
Transportequipment
Woodandwoodproducts
Low/medium‐temperatureheatdemandbytechnology
Heatdemandbysub‐sector
High‐temperatureheatdemandbytechnology
Sub‐sectors
Technology
Chapter 3 | Sectoral pathways to net-zero emissions by 2050 129
3
muchsmaller.About5%ofheatdemandissatisfiedbydirectuse of renewables,
includingsolarthermalandgeothermalheatingtechnologies.
Energyefficiencyalsoplaysacriticalroleinthesemanufacturing industries, notably
through increased efficiency in electric motors (conveyers, pumps and other driven
systems).By2030,90%ofthemotorsalesinotherindustriesareClass3orabove.
3.5.2 Keymilestonesanddecisionpoints
Table 3.3 Key milestones in transforming global heavy industry sub-sectors
Category
Heavyindustry
2035:virtually,allcapacityadditionsareinnovativelow‐emissionsroutes.
Industrialmotors
2035:allelectricmotorssalesarebestinclass.
Category 2020 2030 2050
Totalindustry
Shareofelectricityintotalfinalconsumption 21% 28% 46%
Hydrogendemand(MtH
2
) 51 93 187
CO
2
captured(MtCO
2
) 3 375 2800
Chemicals
Shareofrecycling:reuseinplasticscollection 17% 27% 54%
reuseinsecondaryproduction 8% 14% 35%
Hydrogendemand(MtH
2
) 46 63 83
withon‐siteelectrolysercapacity(GW) 0 38 210
Shareofproductionviainnovativeroutes 1% 13% 93%
CO
2
captured(MtCO
2
) 2 70 540
Steel
Recycling,re‐use:scrapasshareofinput 32% 38% 46%
Hydrogendemand(MtH
2
) 5 19 54
withon‐siteelectrolysercapacity(GW) 0 36 295
Shareofprimarysteelproduction:hydrogen‐basedDRI‐EAF 0% 2% 29%
ironoreelectrolysis‐EAF 0% 0% 13%
CCUS‐equippedprocesses 0% 6% 53%
CO
2
captured 1 70 670
Cement
Clinkertocementratio 0.71 0.65 0.57
Hydrogendemand(MtH
2
) 0 2 12
Shareofproductionviainnovativeroutes 0% 9% 93%
CO
2
captured(MtCO
2
) 0 215 1355
Note:DRI=directreducediron;EAF=electricarcfurnace.
From 2030 onwards, all new capacity additions in industry in the NZE feature near‐zero
emissionstechnologies.Muchoftheheavyindustrycapacitythatwillbeaddedandreplaced
IEA. All rights reserved.
130 International Energy Agency | Special Report
in the coming years is in emerging market and developing economies; they may expect
financialsupportfromadvancedeconomies.Eachmonthfrom2030to2050,theNZEimplies
anadditional10industrialplantsequippedwithCCUS,threeadditionalfullyhydrogen‐based
industrialplantsand2GWofextraelectrolysercapacityatindustrialsites.Whilechallenging,
thisisachievable.Forcomparison,about12heavyindustrialfacilitieswerebuiltfromscratch
onaveragepermonthinChinaalonefrom2000to2015.By2050,nearlyallproductionin
heavyindustryiswithnear‐zeroemissionstechnologies.
Decisiveactionfromgovernmentsisimperativetoachievecleanenergytransitionsinheavy
industryatthescaleandpaceenvisionedintheNZE.Withinthenexttwoyears,governments
inadvancedeconomieswillneedtotakedecisionsaboutfundingforR&Dforcriticalnear
zeroemissionsindustrialtechnologiesandformitigatingtheinvestmentrisksassociatedwith
demonstrating them at scale. This should lead to at least two or three commercial
demonstrationprojectsforeachtechnologyindifferentregions,andtomarketdeployment
bythemid‐2020s.Internationalco‐ordinationandco‐operationwouldfacilitatebetteruse
ofresourcesandhelppreventgapsinfunding.
Governmentsalsoneedtotakeearlydecisionsonlargescaledeployment of near‐zero
emissionstechnologies.By2024inadvancedeconomiesand2026inemergingmarketand
developingeconomies,governmentsshouldhaveinplaceastrategyforincorporatingnear‐
zeroemissionstechnologiesintothenextseriesofcapacityadditionsandreplacementsfor
steelandchemicalplants,whichshouldincludedecisionsaboutwhethertopursueCCUS,
hydrogenoracombinationofboth.Iftheyaretosucceed,thosestrategiesneedtoinclude
concreteplansfordeveloping andfinancingthenecessaryinfrastructureforCCUSand/or
hydrogen, together with clean electricity generation for hydrogen production. The
constructionoftherequiredinfrastructureshouldbeginassoonaspossiblegiventhelong
lead‐timesinvolved.
Withinasimilartimeframe,governmentsofcountriesthatproducecementshoulddecide
howtodevelopthenecessaryCCUSinfrastructureforthatsubsector, including the
necessarylegalandregulatoryframeworks.Importingcountriesshouldmakeplanstomove
progressively to exclusive use of low‐emissions cement, which mayinvolvetheneedto
supportthedevelopmentofCCUS‐equippedfacilitieselsewhereinordertoensuresupplies
andtoavoidadisproportionateburdenbeingplacedonothercountries.
Strategiesmustbeunderpinnedbyspecificpolicies.By2025,allcountriesshouldhavealong‐
termCO
2
emissionsreductionpolicyframeworkinplacetoprovidecertaintythatthenext
wave of investment in capacity additions will feature near‐zero emissions technologies.
Successful strategies are likely torequireinitialmeasuressuchascarboncontractsfor
difference,publicprocurementandincentivestoencourageprivatesectorprocurement.As
newtechnologiesaredeployedandcostsdecline,thereislikelytobeastrongcasebyabout
2030forreplacingtheseinitialmeasureswithotherssuchasCO
2
taxes,emissionstrading
systemsandemissionsperformancestandards.Financingsupportfornear‐zeroemissions
capacityadditionsmayalsohaveanimportantroletoplaythroughmeasuressuchaslow
interestandconcessionalloans andblended finance, as well asthrough contributions by
Chapter 3 | Sectoral pathways to net-zero emissions by 2050 131
3
advanced economies to funds that support projects in emerging market and developing
economies.Strategiesshouldalsoincludemeasurestoreduceindustrialemissionsthrough
material efficiency, for example by revising design regulations, adopting incentives to
promote longer product and building lifetimes, and improving systems for collecting and
sortingmaterialsforrecycling.
Thereisastrongcaseforaninternationalagreementonthetransitiontonear‐zeroemissions
for globally traded products by the mid‐2020s so as to establish a level playing field.
Alternatively,countriesmayneedtoresorttomeasurestoshield domestic near‐zero
emissionsproductionfromcompetitionfromproductsthatcreateemissions.Anysuchpolicy
wouldneedto bedesignedtorespecttheregulatoryframeworksgoverninginternational
trade,suchasthoseoftheWorldTradeOrganization.
Evenwithacceleratedinnovationtimelinesandstrongpoliciesinplace,somehigh‐emitting
capacity additions will be needed to meet demand in the next decade before near‐zero
emissionstechnologiesareavailable.Itwouldmakesenseforgovernmentstorequireany
newcapacitytoincorporateretrofit‐readydesignssothatunabatedcapacityaddedinthe
nextfewyearshasthetechnicalcapacityandspacerequirement to integrate near‐zero
emissionstechnologiesincomingyears.Beyond2030,investmentintheNZEisconfinedto
innovativenear‐zeroemissionsprocessroutes.
Governmentsshouldnotoverlooktheneedformeasurestospurdeployment of already
available near‐zero emissions technologies in light manufacturing industries. Adopting a
carbonpriceandthensufficientlyincreasingthepriceovertime–throughcarbontaxesor
emissionstradingsystemsforlargermanufacturers–maybethesimplestwaytoachieve
thatobjective.Otherregulatorymeasuressuchastradeablelow‐carbonfuelandemissions
standardscouldyieldthesameoutcome,butmayinvolvegreateradministrativecomplexity.
Technologymandatesarelikelytobeneededtoachievetheenergyefficiencysavingsinthe
NZE,suchasminimumenergyperformancestandardsfornewmotorsandboilers.Tailored
programmesandincentivesforsmallandmediumenterprisescouldalsoplayahelpfulrole.
3.6 Transport
3.6.1 EnergyandemissiontrendsintheNet‐ZeroEmissionsScenario
Theglobaltransportsectoremittedover7GtCO
2
in2020,andnearly8.5Gtin2019before
theCovid‐19pandemic.
7
IntheNZE,transportsectorCO
2
emissionsareslightlyover5.5Gt
in2030.By2050theyarearound0.7Gt–a90%droprelativeto2020levels.CO
2
emissions
declineevenwithrapidlyrisingpassengertravel,whichnearlydoublesby2050,andrising
freightactivity,whichincreasesbytwo‐and‐a‐half‐timesfromcurrentlevels,andanincrease
intheglobalpassengercarfleetfrom1.2billionvehiclesin2020tocloseto2billionin2050.
 
7
Unlessotherwisenoted,CO
2
emissionsreportedherearedirectemissionsfromfossilfuelcombustedduring
theoperationofvehicles.
IEA. All rights reserved.
132 International Energy Agency | Special Report
The transport modes do not decarbonise at the same rate because technology maturity
variesmarkedlybetweenthem(Figure3.21).CO
2
emissionsfromtwo/three‐wheelersalmost
ceaseby2040,followedbycars,vansandrailinthelate2040s.Emissionsfromheavytrucks,
shipping and aviation fall by an annual average of 6% between 2020 and 2050, but still
collectivelyamounttomorethan0.5GtCO
2
in2050.Thisreflectsprojectedactivitygrowth
andthatmanyofthetechnologiesneededtoreduceCO
2
emissionsinlongdistancetransport
are currently under development and do not start to make substantial inroads into the
marketinthecomingdecade.
Figure 3.21
Global CO
2
transport emissions by mode and share of emissions
reductions to 2050 by technology maturity in the NZE
IEA.Allrightsreserved.
Passenger cars can make use of low-emissions technologies on the market, but major
advances are needed for heavy trucks, shipping and aviation to reduce their emissions
Notes: Other road = two/three wheelers and buses. Shipping and aviation include both domestic and
internationaloperations.SeeBox2.4fordetailsonthematuritycategories.
DecarbonisationofthetransportsectorintheNZEreliesonpoliciestopromotemodalshifts
and more efficient operations across passenger transport modes (see sections
2.5.7and4.4.3),
8
aswellasimprovementsinenergyefficiency.Italsodependsontwomajor
technologytransitions:shiftstowardselectricmobility(electricvehicles[EVs]andfuelcell
electricvehicles[FCEVs])
9
andshiftstowards higherfuelblendingratiosanddirectuseof
 
8
Examplesofefficientoperations include: seamless integration of various modes (inter‐modality) and
“MobilityasaService”inpassengertransport;logisticsmeasuresinroadfreight,e.g.backhauling,night‐time
deliveries,real‐timerouting;slowsteaminginshipping;andairtrafficmanagement,e.g.landingandtake‐off
schedulinginaviation.
9
EVsincludebatteryelectricvehicles,plug‐inhybridelectric‐gasolinevehiclesandplug‐inhybridelectric‐diesel
vehicles.FCEVscontainabatteryandelectricmotorandarecapableofoperatingwithouttailpipeemissions.
1
2
3
4
2010 2020 2030 2040 2050
GtCO
2
Light‐dutyvehicles Heavytrucks
Otherroad Shipping
Aviation Rail
CO₂emissionsbymode
25%
50%
75%
100%
Heavy
trucks
Shipping Aviation
Mature Marketuptake
Demonstration Prototype
Technologymaturitybymode
Chapter 3 | Sectoral pathways to net-zero emissions by 2050 133
3
low‐carbon fuels (biofuels and hydrogen‐based fuels). These shifts are likely to require
interventionstostimulateinvestmentinsupplyinfrastructureandtoincentiviseconsumer
uptake.
Transporthastraditionallybeenheavilyreliantonoilproducts,whichaccountedformore
than 90% of transport sector energy needs in 2020 despite inroads from biofuels and
electricity(Figure3.22).IntheNZE,theshareofoildropstolessthan75%in2030andslightly
over10%by2050.Bytheearly2040s,electricitybecomesthedominantfuelinthetransport
sectorworldwideintheNZE:itaccountsfornearly45%oftotalfinalconsumptionin2050,
followedbyhydrogen‐basedfuels(28%)andbioenergy(16%).Biofuelsalmostreacha15%
blendingshareinoilproductsby2030inroadtransport,whichreducesoilneedsbyaround
4.5millionbarrelsofoilequivalentperday(mboe/d).Beyond2030,biofuelsareincreasingly
usedforaviationandshipping,wherethescopeforusingelectricityandhydrogenismore
limited.Hydrogencarriers(suchasammonia)andlow‐emissionssyntheticfuelsalsosupply
increasingsharesofenergydemandinthesemodes.
Figure 3.22
Global transport final consumption by fuel type and mode
in the NZE
IEA.Allrightsreserved.
Electricity and hydrogen-based fuels account for more than
70% of transport energy demand by 2050
Note:LDVs=Light‐dutyvehicles;Otherroad=two/threewheelersandbuses.
Roadvehicles
Electrification plays a central role indecarbonising roadvehicles in the NZE. Battery cost
declinesofalmost90%inadecadehaveboostedsalesofelectricpassengercarsby40%on
average over the past five years.Batterytechnologyisalready relatively commercially
competitive.FCEVsstarttomakeinroadsinthe2020sintheNZE.Theelectrificationofheavy
trucks moves more slowly due to the weight of the batteries, high energy and power
30
60
90
120
2020 2030 2040 2050
EJ
Other
Aviation
Shipping
Rail
Heavytrucks
LDVs
Otherroad
Hydrogen‐
basedfuels
Bioenergy
Electricity
Fossilfuels
Consumptionbyfuel
2020 2030 2050
Consumptionbymode
Fuels
Modes
IEA. All rights reserved.
134 International Energy Agency | Special Report
requirementsrequiredforcharging,andlimitsondrivingranges.Butfuelcellheavytrucks
makesignificantprogress,mainlyafter2030(Figure3.23).Thenumberofbatteryelectric,
plug‐inhybridandfuelcellelectriclight‐dutyvehicles(carsandvans)ontheworld’sroads
reaches350millionin2030 and almost 2billionin2050,upfrom 11millionin2020.The
numberofelectrictwo/three‐wheelersalsorisesrapidly,fromjustunder300milliontoday
to600millionin2030and1.2billionin2050.Theelectricbusfleetexpandsfrom0.5million
in2020to8millionin2030and50millionin2050.
Figure 3.23
Global share of battery electric, plug-in hybrid and fuel cell
electric vehicles in total sales by vehicle type in the NZE
IEA.Allrightsreserved.
Sales of battery electric, plug-in hybrid and fuel cell electric vehicles soar globally
Note:Light‐dutyvehicles=passengercarsandvans;Heavytrucks=medium‐andheavy‐freighttrucks.
Light‐dutyvehiclesareelectrifiedfasterinadvancedeconomiesoverthemediumtermand
account for around 75% of sales by 2030. In emerging and developing economies, they
accountforabout50%ofsales.Almostalllight‐dutyvehiclesalesinadvancedeconomiesare
batteryelectric,plug‐inhybridorfuelcellelectricbytheearly2030sandinemergingand
developingeconomiesbythemid‐2030s.
Forheavy trucksthat operate overlong distances, currently biofuelsarethemainviable
commercialalternativetodiesel,andtheyplayanimportantroleinloweringemissionsfrom
heavy‐duty trucks over the 2020s. Beyond 2030, the number of electric and hydrogen‐
poweredheavytrucksincreasesintheNZEassupportinginfrastructureisbuiltandascosts
decline(lowerbatterycosts,energydensityimprovementsandlowercoststoproduceand
deliver hydrogen) (IEA, 2020b). This coincides with a reduction in the availability of
sustainablebioenergy,aslimitedsuppliesincreasinglygotohard‐to‐abatesegmentssuchas
aviation and shipping, though biofuels stillmeet about10% of fuel needs for heavy‐duty
trucksin2050(seeChapter2).Advancedeconomieshaveahighermarketshareofbattery
20%
40%
60%
80%
100%
2020 2030 2050 2020 2030 2050 2020 2030 2050
Batteryelectric Plug‐inhybridelectric Fuelcellelectric
Light‐dutyvehicles Heavytrucks Two/three‐wheelers
Chapter 3 | Sectoral pathways to net-zero emissions by 2050 135
3
electricandfuelcellelectricheavy‐dutytruckssalesin2030,morethantwicethelevelin
emergingmarketanddevelopingeconomies,althoughthisgapclosestowards2050.
Figure 3.24
Heavy trucks distribution by daily driving distance, 2050
IEA.Allrightsreserved.
Driving distance is the key factor affecting powertrain choice for trucks
RealisingtheobjectivesoftheNZEdependsonrapidscalingupofbatterymanufacturing
(currentannouncedproductioncapacityfor2030wouldcoveronly50%ofrequireddemand
in that year), and on the rapid introduction on the market of next generation battery
technology(solid state batteries)between2025 and 2030.Electrified road systemsusing
conductiveorinductivepowertransfertoprovideelectricitytotrucksofferanalternativefor
batteryelectricandfuelcellelectrictrucksonlongdistanceoperations,butthesesystems
toowouldneedrapiddevelopmentanddeployment.
Aviation
10
TheNZEassumesthatairtravel,measuredinrevenuepassengerkilometres,increasesby
onlyaround3%peryearto2050relativeto2020.Thiscompareswithaboutaround6%over
the2010‐19period.TheNZEassumesthataviationgrowthisconstrainedbycomprehensive
governmentpoliciesthatpromoteashifttowardshighspeedrailandreininexpansionof
long‐haul business travel, e.g. throughtaxesoncommercialpassenger flights (see
section2.5.2).
GlobalCO
2
emissionsfromaviationriseintheNZEfromabout640Mtin2020(downfrom
around1Gtin2019)toapeakof950Mtbyaround2025.Emissionsthenfallto210Mtin
2050astheuseoflow‐emissionsfuelsgrows.Emissionsarehardtoabatebecauseaviation
 
10
Aviation considered here includes both domestic and internationalflights.Whilethefocushereison
commercialpassengeraviation,dedicated freight and general (military and private) aviation, which
collectivelyaccountformorethan10%offueluseandemissions,arealsoincludedintheenergyandemissions
accounting.
0.05%
0.10%
0.15%
0.20%
0.25%
0 200 400 600 800 1000
Probabilitydensity
Dailydrivingdistance(km)
Battery
electric
Fuelcell
electric
IEA. All rights reserved.
136 International Energy Agency | Special Report
requiresfuelwitha high energy density.Emissionsinaviation comprisejustover10% of
unabatedCO
2
emissionsfromfossilfuelsandindustrialprocessesin2050.
IntheNZE,theglobaluseofjetkerosenedeclinestoabout3EJin2050from9EJin2020
(andaround14.5EJin2019beforetheCovid‐19crisis),anditsshareoftotalenergyusefalls
fromalmost100%tojustover20%.Theuseofsustainableaviation fuel (SAF) starts to
increasesignificantlyinthelate‐2020s.In2030,around15% of totalfuelconsumptionin
aviationisSAF,mostofwhichisbiojetkerosene(atypeofliquidbiofuel).Thisisestimated
toincreasetheticketpriceforamid‐haulflight(1200km)byaboutUSD3perpassenger.By
2050, biojet kerosene meets 45% of total fuel consumption in aviation and synthetic
hydrogen‐basedfuelsmeetabout30%.Thisisestimatedtoincreasetheticketpricefora
mid‐haulflightin2050byaboutUSD10perpassenger.TheNZEalsoseestheadoptionof
commercialbatteryelectricandhydrogenaircraftfrom2035,buttheyaccountforlessthan
2%offuelconsumptionin2050.
Operational improvements, together with fuel efficiency technologies for airframes and
engines,alsohelptoreduceCO
2
emissionsbycurbingthepaceoffueldemandgrowthinthe
NZE. These improvements are incremental, but revolutionary technologies such as open
rotors,blendedwing‐bodyairframesandhybridisationcouldbringfurthergainsandenable
theindustrytomeettheInternationalCiviIAviationOrganization’s(ICAO)ambitious2050
efficiencytargets(IEA,2020b).
Maritimeshipping
11
Maritime shipping was responsible for around 830Mt CO
2
emissions worldwide in 2020
(880MtCO
2
in2019),whichisaround2.5%oftotalenergysectoremissions.Duetoalackof
available low‐carbon options on the market and the long lifetime of vessels (typically
2535years),shippingisoneofthefewtransportmodesthatdoes not achieve zero
emissionsby2050intheNZE.Nevertheless,emissionsfromshippingdeclineby6%annually
to120MtCO
2
in2050.
Intheshortterm,thereisconsiderablepotentialforcurbingfuelconsumptioninshipping
throughmeasurestooptimiseoperationalefficiency andimprove energy efficiency. Such
approachesincludeslowsteamingandtheuseofwind‐assistancetechnologies(IEA,2020b).
Inthe medium tolong term, significant emissions reductions are achieved in the NZE by
switchingtolow‐carbonfuelssuchasbiofuels,hydrogenandammonia.Ammonialookslikely
to be a particularly good candidate for scaling up, and a criticalfuelforlongrange
transoceanicjourneysthatneedfuelwithhighenergydensity.
Ammoniaandhydrogenarethemainlow‐carbonfuelsforshippingadoptedoverthenext
threedecades in theNZE, their combined shareof total energyconsumption inshipping
reachingaround60%in2050.The20largestportsintheworldaccountformorethanhalf
ofglobalcargo(UNCTAD,2018);theycouldbecomeindustrialhubstoproducehydrogenand
 
11
Maritimeshippinghereincludesbothdomesticandinternationaloperations.
Chapter 3 | Sectoral pathways to net-zero emissions by 2050 137
3
ammonia for use in both chemical and refining industries, as well as for refuelling ships.
Internalcombustionenginesforammonia‐fuelledvesselsarecurrentlybeingdevelopedby
twoofthelargestmanufacturersofmaritimeenginesandareexpectedtobecomeavailable
onthemarketby2024.Sustainablebiofuelsprovidealmost20%oftotalshippingenergy
needsin 2050.Electricity plays a very minor role, as the relatively low energy densityof
batteries compared with liquid fuels makes it suitable only for shipping routes of up to
200km. Even with an 85% increase in battery energy density in the NZE as solid state
batteriescometomarket,onlyshort‐distanceshippingroutescanbeelectrified.
Rail
Railtransportisthemostenergyefficientandleastcarbonintensivewaytomovepeople
andsecondonlytoshippingforcarryinggoods.Passengerrailalmostdoublesitsshareof
totaltransportactivityto20%by2050intheNZE,withparticularlyrapidgrowthinurban
andhighspeedrail(HSR),thelatterofwhichcontributestocurbinggrowth inair travel.
GlobalCO
2
emissionsfromtherailsectorfallfrom95MtCO
2
in2020(100MtCO
2
in2019)
toalmostzeroby2050intheNZE,drivenprimarilybyrapidelectrification.
Figure 3.25
Global energy consumption by fuel and CO
2
intensity in
non-road sectors in the NZE
IEA.Allrightsreserved.
Railways rely heavily on electricity to decarbonise, while shipping and aviation
curb emissions mainly by switching to low-emissions fuels
Note:Syntheticfuel=low‐emissionssynthetichydrogen‐basedfuels.
IntheNZE,allnewtracksonhigh‐throughputcorridorsareelectrifiedfromnowon,while
hydrogenandbatteryelectrictrains,whichhaverecentlybeendemonstratedinEurope,are
adoptedonraillineswherethroughputistoolowtomakeelectrificationeconomicallyviable.
Oiluse,whichaccountedfor55%oftotalenergyconsumptionintherailsectorin2020,falls
toalmostzeroin2050:itisreplacedbyelectricity,whichprovidesover90%ofrailenergy
needsandbyhydrogenwhichprovidesanother5%.
10
20
30
40
50
20%
40%
60%
80%
100%
2020 2030 2040 2050 2020 2030 2040 2050 2020 2030 2040 2050
gCO₂/MJ
Oil Gas Bioenergy Hydrogen Ammonia Electricity Syntheticfuel CO₂intensity
Rail Maritimeshipping Aviation
(rightaxis)
IEA. All rights reserved.
138 International Energy Agency | Special Report
3.6.2 Keymilestonesanddecisionpoints
Table 3.4 Key milestones in transforming the global transport sector
Category
Roadtransport
2035:nonewpassengerinternalcombustionenginecarsalesglobally
Aviationand
shipping
Implementationofstrictcarbonemissionsintensityreductiontargetsassoonas
possible.
Category 2020 2030 2050
Roadtransport
ShareofPHEV,BEVandFCEVinsales:cars 5% 64% 100%
two/three‐wheelers 40% 85% 100%
bus 3% 60% 100%
vans0% 72% 100%
heavytrucks 0% 30% 99%
Biofuelblendinginoilproducts 5% 13% 41%
Rail
Shareofelectricityandhydrogenintotalenergyconsumption 43% 65% 96%
Activityincreaseduetomodalshift(index2020=100) 100 100 130
Aviation
Synthetichydrogen‐basedfuelsshareintotalaviationenergyconsumption 0% 2% 33%
Biofuelsshareintotalaviationenergyconsumption 0% 16% 45%
Avoideddemandfrombehaviourmeasures(index2020=100) 0 20 38
Shipping
Shareintotalshippingenergyconsumption:Ammonia 0% 8% 46%
Hydrogen0% 2% 17%
Bioenergy0% 7% 21%
Infrastructure
EVpubliccharging(millionunits) 1.3 40 200
Hydrogenrefuellingunits 540 18000 90000
Shareofelectrifiedraillines 34% 47% 65%
Note:PHEV=plug‐inhybridelectricvehicles;BEV=batteryelectricvehicles;FCEV=fuelcellelectricvehicles.
Electrification is themain option toreduce CO
2
emissions from road and railmodes, the
technologiesarealreadyonthemarketandshouldbeacceleratedimmediately,together
withtheroll‐outofrecharginginfrastructureforEVs.Deepemissionreductionsinthehard‐
to‐abate sectors (heavy trucks, shipping and aviation) require amassivescaleupofthe
requiredtechnologiesoverthenextdecade,whichtodayarelargelyattheprototypeand
demonstrationstages,togetherwithplansforthedevelopmentofassociatedinfrastructure,
includinghydrogenrefuellingstations.
Chapter 3 | Sectoral pathways to net-zero emissions by 2050 139
3
Thetransformationoftransportrequiredtobeontracktoreduceemissionsinlinewiththe
NZEcallsforarangeofgovernmentdecisionsoverthenextdecade.Inthenextfewyears,
all governments need to eliminate fossil fuel subsidies and encourage switching to low‐
carbontechnologiesandfuelsacrosstheentiretransportsector.Before2025,governments
needtodefineclearR&Dprioritiesforallthetechnologiesthatcancontributetodecarbonise
transportinlinewiththeirstrategicprioritiesandneeds.Ideallythiswouldbeinformedby
internationaldialogueandcollaboration.R&Discriticalinparticularforbatterytechnology,
whichshouldbeanimmediatepriority.
ToachievetheemissionsreductionsrequiredbytheNZE,governmentsalsoneedtomove
quicklytosignaltheendofsalesofnewinternalcombustionenginecars.Earlycommitments
wouldhelptheprivatesectortomakethenecessaryinvestmentinnewpowertrains,relative
supplychainsandrefuellinginfrastructure(seesection4.3.4).Thisisparticularlyimportant
forthesupplyofbatterymetals,whichrequirelong‐termplanning(IEA,2021a).
By 2025, the large‐scale deployment of EV public charging infrastructure in urban areas
needstobesufficientlyadvancedtoallowhouseholdswithoutaccesstoprivatechargersto
opt for EVs. Governments should ensure sustainable business models for companies
installingchargers,removebarrierstoplanningandconstruction,andputinplaceregulatory,
fiscalandtechnologicalmeasurestoenableandencouragesmartcharging,andtoensure
thatEVssupportelectricitygridstabilityandstimulatetheadoptionofvariablerenewables
(IEA,2021b).
For heavy trucks, battery electric trucks are just beginning to become available on the
market,andfuelcellelectrictechnologiesareexpectedtocometomarketinthenextfew
years.Workingincollaborationwithtruckmanufacturers,governmentsshouldtakestepsin
theneartermtoprioritisetherapidcommercialadoptionofbatteryelectricandfuelcell
electric trucks. By 2030, they should take stock of the competitiveprospectsforthese
technologies,soastofocusR&Donthemostimportantchallengesandallowadequatetime
forstrategicinfrastructuredeployment,thuspavingthewayforlarge‐scaleadoptionduring
the2030s.
Governmentsneedtodefinetheirstrategiesforlow‐carbonfuelsinshippingandaviationby
2025atthelatest,giventheslowturnoverrateofthefleets,afterwhichtheyshouldrapidly
implement them. International co‐operation and collaboration will be crucial to success.
Priorityactionshouldtargetthemostheavilyusedportsandairportssoastomaximisethe
impactofinitialinvestment.Harboursnearindustrialareasareideallyplacedtobecomelow‐
carbonfuelhubs.

IEA. All rights reserved.
140 International Energy Agency | Special Report
Box 3.3 What would be the implications of an all-electric approach to
emissions reductions in the road transport sector?
TheuseofavarietyoffuelsinroadtransportisacorecomponentoftheNZE.However,
governmentsmightwanttoconsideranallelectricroutetoeliminateCO
2
emissionsfrom
transport,especiallyifothertechnologiessuchasFCEVsandadvancedbiofuelsfailto
developasprojected.WehavethereforedevelopedanAll‐ElectricCasewhichlooksat
theimplicationsofelectrifyingallroadvehiclemodes.IntheNZE,decarbonisationofroad
transportoccursprimarilyviatheadoptionofpluginhybridelectric vehicles(PHEVs),
batteryelectricvehicles(BEVs),fuelcellelectricvehicles(FCEVs)andadvancedbiofuels.
TheAll‐ElectricCaseassumesthesamerateofroadtransportdecarbonisationastheNZE,
butachievedviabatteryelectricvehiclesalone.
TheAll‐ElectricCasedependsonevenfurtheradvancesinbatterytechnologiesthanthe
NZEthatleadtoenergydensitiesofatleast400Watthoursperkilogramme(Wh/kg)by
the2030satcoststhatwouldmakeBEVtruckspreferabletoFCEVtrucksinlong‐haul
operations.Thiswouldmean30%moreBEVs(anadditional350million)ontheroadin
2030thanintheNZE.Oversixtyfivemillionpublicchargerswouldbeneededtosupport
thevehicles,requiringacumulativeinvestmentofaroundUSD300billion,35%higher
thantheNZE.Thiswouldrequirefasterexpansionofbatterymanufacturing.Theannual
global battery capacity additions for BEVs in 2030 would be almost 9TWh, requiring
80giga‐factories(assuming35GWhperyearoutput)morethanintheNZE,oranaverage
ofovertwopermonthfromnowto2030.
Theincreaseduseofelectricityforroadtransportwouldalsocreateadditionalchallenges
fortheelectricitysector.Thetotalelectricitydemandforroadtransport(11000TWhor
15%oftotalelectricityconsumptionin2050),wouldberoughlythesameinbothcases,
whenaccountistaken ofdemandforelectrolytichydrogen.However,theelectrolytic
hydrogen in the NZE can be produced flexibly, in regions and at times with surplus
renewables‐basedcapacityandfromdedicated(off‐grid)renewablepower.Peakpower
demand in the All‐Electric Case, taking into consideration the flexibility that enables
smartchargingofcars,isaboutone‐third(2000GW)higherthanintheNZE,mainlydue
totheadditional evening/overnight charging ofbuses and trucks. If not coupled with
energystoragedevices,ultra‐fastchargersforheavy‐dutyvehiclescouldcauseadditional
spikesindemand,puttingevenmorestrainonelectricitygrids.
While full electrification of road transport is possible, it could involve additional
challenges and undesirable side effects. For example, it could increase pressure on
electricity grids, requiring significant additional investment, and increasing the
vulnerability of the transport system to power disruptions. Fuel diversification could
bringbenefitsintermsofresilienceandenergysecurity.
Chapter 3 | Sectoral pathways to net-zero emissions by 2050 141
3
Figure 3.26 Global electricity demand and battery capacity for road
transport in the NZE and the All-Electric Case
IEA.Allrightsreserved.
Both direct electricity consumption and vehicle battery capacity in 2050
increase by about a quarter in the All-Electric Case relative to the NZE
Note:AEC=All‐ElectricCase.
3.7 Buildings
3.7.1 EnergyandemissiontrendsintheNet‐ZeroEmissionsScenario
Floorareainthebuildingssectorworldwideisexpectedtoincrease75%between2020and
2050,ofwhich80%isinemergingmarketanddevelopingeconomies.Globally,floorarea
equivalenttothesurfaceofthecityofParisisaddedeveryweekthroughto2050.Moreover,
buildingsinmanyadvancedeconomieshavelonglifetimesandaroundhalfoftheexisting
buildingsstockwillstillbestandingin2050.Demandforappliancesandcoolingequipment
continues to grow, especially in emerging market and developingeconomieswhere
650millionair conditioners are added by2030 and another2billion by 2050intheNZE.
Despitethisdemandgrowth,totalCO
2
emissionsfromthebuildingssectordeclinebymore
than95%fromalmost3Gtin2020toaround120Mtin2050intheNZE.
12

Energy efficiency and electrification are the two main drivers of decarbonisation of the
buildingssectorintheNZE(Figure3.27).Thattransformationreliesprimarilyontechnologies
 
12
AllCO
2
emissions inthissectionrefertodirectCO
2
emissions unless otherwisespecified. TheNZEalso
pursuesreductionsinemissionslinkedtoconstructionmaterialsusedinbuildings.Theseembodiedemissions
arecutby40%persquaremetreofnewfloorareaby2030,withmaterialefficiencystrategiescuttingcement
andsteeluseby50%by2050relativetotodaythroughmeasuresatthedesign,construction,useandend‐of‐
lifephases.
4000
8000
12000
2020 2030 2050 2030 2050
NZE AEC
TWh
Two/three‐wheelers Buses Carsandvans Heavytrucks ElectrolyticH₂
Electricitydemand
100
200
300
2020 2030 2050 2030 2050
NZE AEC
TWh
On‐roadbatterycapacity
IEA. All rights reserved.
142 International Energy Agency | Special Report
already available on the market, including improved envelopes fornewandexisting
buildings, heat pumps, energy‐efficient appliances, and bioclimatic and material‐efficient
building design. Digitalisation and smart controls enable efficiency gains that reduce
emissions from the buildings sector by 350MtCO
2
by2050.Behaviourchangesarealso
importantintheNZE,withareductionofalmost250MtCO
2
in2030reflectingchangesin
temperature settings for space heating or reducing excessive hot water temperatures.
Additionalbehaviourchangessuchasgreateruseofcoldtemperatureclotheswashingand
line drying, facilitate the decarbonisation of electricity supply.Thereisscopeforthese
reductionstobeachievedrapidlyandatnocost.
Figure 3.27
Global direct CO
2
emissions reductions by mitigation measure in
buildings in the NZE
IEA.Allrightsreserved.
Electrification and energy efficiency account for nearly 70% of buildings-related emissions
reductions through to 2050, followed by solar thermal, bioenergy and behaviour
Notes: Activity = change in energy service demand related to rising population, increased floor area and
incomepercapita.Behaviour=changeinenergyservicedemandfromuserdecisions,e.g.changingheating
temperatures. Avoided demand = change in energy service demand from technology developments, e.g.
digitalisation.
Rapidshiftstozero‐carbon‐readytechnologiesseetheshareoffossilfuelsinenergydemand
inthebuildingssectordropto30%by2030,andto2%by2050intheNZE.Theshareof
electricityintheenergymixreachesalmost50%by2030and66%by2050,upfrom33%in
2020(Figure3.28).Allend‐usestodaydominatedbyfossilfuelsareincreasinglyelectrifiedin
theNZE,withtheshareofelectricityinspaceheating,waterheatingandcookingincreasing
fromlessthan20%todaytomorethan40%in2050.Districtenergynetworksandlow‐carbon
gases,includinghydrogen‐basedfuels,remainsignificantin2050inregionswithhighheating
needs,denseurbanpopulationsandexistinggasordistrictheatnetworks.Bioenergymeets
nearlyone‐quarterofoverallheatdemandintheNZEby2050,over50%ofbioenergyuseis
for cooking, nearly all in emerging market and developing economies, where 2.7billion
1
2
3
4
2020 2030 2050
GtCO
2
Activity
Behaviourand
avoideddemand
Energyefficiency
Electrification
Hydrogen‐based
Bioenergy
Otherrenewables
Otherfuelshifts
+29%
‐51%
+96%
‐97%
Measures
Mitigationmeasures
Activity
Chapter 3 | Sectoral pathways to net-zero emissions by 2050 143
3
peoplegainaccesstocleancookingby2030intheNZE.Spaceheatingdemanddropsbytwo‐
thirdsbetween2020and2050,drivenbyimprovementinenergyefficiencyandbehavioural
changessuchastheadjustmentoftemperaturesetpoints.
Figure 3.28
Global final energy consumption by fuel and end-use
application in buildings in the NZE
IEA.Allrightsreserved.
Fossil fuel use in the buildings sector declines by 96% and space heating energy needs
by two-thirds to 2050, thanks mainly to energy efficiency gains
Note:Otherincludes desalination andtraditionaluse of solidbiomasswhichisnotallocatedtoaspecific
end‐use.
Zero‐carbon‐readybuildings
TheNZEpathwayforthebuildingssectorrequiresastepchangeimprovementintheenergy
efficiencyandflexibilityofthestockandacompleteshiftawayfromfossilfuels.Toachieve
this,morethan85%ofbuildingsneedtocomplywithzerocarbon‐readybuilding energy
codes by 2050 (Box3.4). This means that mandatory zero‐carbon‐ready building energy
codesforallnewbuildingsneedtobeintroducedinallregionsby2030,andthatretrofits
need to be carried out in most existing buildings by 2050 to enablethemtomeetzero
carbon‐readybuildingenergycodes.
Retrofitratesincreasefromlessthan1%peryeartodaytoabout2.5%peryearby2030in
advancedeconomies:thismeansthataround10milliondwellingsareretrofittedeveryyear.
Inemergingmarketanddevelopingeconomies,buildinglifetimesaretypicallylowerthanin
advancedeconomies,meaningthatretrofitratesby2030intheNZEarelower,ataround2%
peryear.Thisrequirestheretrofittingof20milliondwellingsperyearonaverageto2030.
To achieve savings at the lowest cost and to minimise disruption,retrofitsneedtobe
comprehensiveandone‐off.
25 50 75 100 125
2050
2030
2020
2050
2030
2020
EJ
Spaceheating
Waterheating
Spacecooling
Lighting
Cooking
Appliances
Other
Coal
Oil
Naturalgas
Hydrogen
Electricity
Districtenergy
Renewables
Traditionaluseof
Byfuel
Byend‐use
End‐uses
Fuels
biomass
IEA. All rights reserved.
144 International Energy Agency | Special Report
Box 3.4 Towards zero-carbon-ready buildings
Achieving decarbonisation of energy use in the sector requires almost all existing
buildingstoundergoasinglein‐depthretrofitby2050,andnewconstructiontomeet
stringentefficiencystandards.Buildingenergycodescoveringnewandexistingbuildings
are the fundamental policy instrument to drive such changes. Building energy codes
currentlyexistorareunderdevelopmentinonly75countries,andcodesinaround40of
thesecountriesaremandatoryforboththeresidentialandservicessub‐sectors.Inthe
NZE,comprehensivezero‐carbon‐readybuildingcodesareimplementedinallcountries
by2030atthelatest.
Whatisazero‐carbon‐readybuilding?
Azero‐carbon‐readybuildingishighlyenergyefficientandeitherusesrenewableenergy
directly, or uses an energy supply that will be fully decarbonised by 2050, such as
electricityordistrictheat.Thismeansthatazero‐carbon‐readybuildingwillbecomea
zero‐carbon building by 2050, without any further changes to the building or its
equipment.
Zero‐carbon‐readybuildingsshouldadjusttouserneedsandmaximisetheefficientand
smart use of energy, materials and space to facilitate the decarbonisation of other
sectors.Keyconsiderationsinclude:
Scope.Zero‐carbon‐readybuildingenergycodesshouldcoverbuildingoperations
(scope1and2)aswellasemissionsfromthemanufacturingofbuildingconstruction
materialsandcomponents(scope3orembodiedcarbonemissions).
Energyuse.Zero‐carbon‐readyenergycodesshouldrecognisetheimportantpart
that passive design features, building envelope improvements and high energy
performance equipment play in lowering energy demand, reducing both the
operatingcostofbuildingsandthecostsofdecarbonisingtheenergysupply.
Energy supply. Whenever possible, newand existing zero‐carbon‐ready buildings
shouldintegratelocallyavailablerenewableresources,e.g.solarthermal,solarPV,
PV thermal and geothermal, to reduce the need for utility‐scale energy supply.
Thermal or battery energy storage may be needed to support local energy
generation.
Integration with power systems. Zero‐carbon‐ready building energy codes need
buildingstobecomeaflexibleresourcefortheenergysystem,usingconnectivity
andautomationtomanagebuildingelectricitydemandandtheoperationofenergy
storagedevices,includingEVs.
Buildings and constructionvaluechain.Zero‐carbon‐readybuildingenergycodes
should also target net‐zero emissions from material use in buildings. Material
efficiencystrategies cancut cementand steel demandin thebuildings sector by
morethanathirdrelativetobaselinetrends,andembodiedemissionscanbefurther
reduced by more robust uptake of bio‐sourced and innovative construction
materials.
Chapter 3 | Sectoral pathways to net-zero emissions by 2050 145
3
Heatingandcooling
Buildingenvelopeimprovementsinzero‐carbon‐readyretrofitandnewbuildingsaccountfor
themajorityofheatingandcoolingenergyintensityreductionsintheNZE,butheatingand
coolingtechnologyalsomakesasignificantcontribution.Spaceheatingistransformedinthe
NZE,withhomesheatedbynaturalgasfallingfromnearly30%ofthetotaltodaytolessthan
0.5%in2050,whilehomesusingelectricityforheatingrisefromnearly20%ofthetotaltoday
to35% in 2030andabout55% in 2050(Figure3.29). High efficiencyelectricheat pumps
becometheprimarytechnologychoiceforspaceheatingintheNZE,withworldwideheat
pump installations per month rising from 1.5million today to around 5million by 2030
and10millionby2050.Hybridheatpumpsarealsousedinsomeofthecoldestclimates,but
meetnomorethan5%ofheatingdemandin2050.
Figure 3.29
Global building and heating equipment stock by type and useful
space heating and cooling demand intensity changes in the NZE
IEA.Allrightsreserved.
By 2050, over 85% of buildings are zero-carbon-ready, reducing average useful heating
intensity by 75%, with heat pumps meeting over half of heating needs
Notes:ZCRBreferstobuildingsmeetingzero‐carbon‐readybuildingenergycodes.Otherforbuildingenvelope
referstoenvelopesthatdonotmeetzero‐carbon‐readybuildingenergycodes.Otherforheatingequipment
stockincludesresistiveheaters,andhybridandgasheatpumps.
Notallbuildingsarebestdecarbonisedwithheatpumps,however,andbioenergyboilers,
solarthermal,districtheat,low‐carbongasesingasnetworksandhydrogenfuelcellsallplay
aroleinmakingtheglobalbuildingstockzero‐carbon‐readyby2050.Bioenergymeets10%
ofspaceheatingneedsby2030andmorethan20%by2050.Solarthermalisthepreferred
renewabletechnologyforwaterheating,especiallywhereheatdemandislow;intheNZEit
meets 35% of demand by 2050, up from 7% today. District heat networks remain an
attractive option for many compact urban centres where heat pump installation is
impractical,intheNZEtheyprovidemorethan20%offinalenergydemandforspaceheating
in2050,upfromalittleover10%today.
25
50
75
100
100
200
300
400
2020 2030 2050
Index(2020=100)
Billionm²
RetrofitZCRB NewZCRB Other
Heating Cooling
Buildingenvelope
Intensity (rightaxis):
1
2
3
4
2020 2030 2050
Billionunits
Coalandoil Gas Districtheat
Biomass Solarthermal Hydrogen
Heatpumps Other
Heatingequipmentstock
IEA. All rights reserved.
146 International Energy Agency | Special Report
Therearenonewcoalandoilboilerssoldgloballyfrom2025intheNZE.Salesofgasboilers
fallbymorethan40%fromcurrentlevelsby2030andby90%by2050.By2025intheNZE,
anygasboilersthataresoldarecapableofburning100%hydrogenandthereforearezero‐
carbon‐ready.Theshareoflow‐carbongases(hydrogen,biomethane,syntheticmethane)in
gasdistributedtobuildingsrisesfromalmostzeroto10%by2030toabove75%by2050.
Buildingsthatmeetthestandardsofzero‐carbon‐readybuildingenergycodesdrivedown
theneednotonlyforspaceheatingbutalsoforspacecooling–thefastestgrowingend‐use
in buildings since 2000. Space cooling represented only 5% of total buildings energy
consumptionworldwide in2020, but demandforcooling is likelytogrow stronglyinthe
comingdecadeswithrisingincomesandahotterclimate.Inthe NZE,60%ofhouseholds
haveanairconditionerin2050,upfrom35%in2020.High‐performancebuildingenvelopes,
includingbioclimaticdesignsandinsulation,can reduce thedemandforspacecoolingby
30‐50%,whileprovidinggreaterresilienceduringextremeheatevents.IntheNZE,electricity
demand for space cooling grows annually by 1% to reach 2500TWh in 2050. Without
2000TWhofsavingsfromresidentialbuildingenvelopeimprovementsandhigherefficiency
equipment,spacecoolingdemandwouldbealmosttwiceashigh.
Appliancesandlighting
Electricappliancesandlightingbecomemuchmoreefficientoverthenextthreedecadesin
theNZEthankstopolicymeasuresandtechnicaladvances.By2025intheNZE,over80%of
all appliances and air conditioners sold in advanced economies are the best available
technologiestodayinthesemarkets,andthisshareincreasesto100%bythemid‐2030s.In
emergingmarketanddevelopingeconomies,whichaccountforoverhalfofappliancesand
airconditionersby2050,theNZEassumesawaveofpolicyactionoverthenextdecadewhich
leads to 80% of equipment sold in these markets in 2030 being asefficientasthebest
availabletechnologiesinadvancedeconomiestoday,increasingtocloseto100%by2050
(Figure3.30).Theshareoflightemittingdiode(LED)lampsintotallightbulbsalesreaches
100%by2025inallregions.Minimumenergyperformancestandardsarecomplementedby
requirements for smart control of appliances to facilitate demand‐side response in all
regions.
Energyuse in buildings will be increasingly focused on electric, electronicandconnected
equipmentandappliances.Theshareofelectricityinenergyconsumptioninbuildingsrises
from33%in2020toaroundtwo‐thirdsin2050intheNZE,withmanybuildingsincorporating
decentralised electricity generation using local solar PV panels,batterystorageandEV
chargers.ThenumberofresidentialbuildingswithsolarPVpanelsincreasesfrom25million
to240millionoverthesameperiod.IntheNZE,smartcontrolsystemsshiftflexibleusesof
electricity in time to correspond with generation from local renewables, or to provide
flexibilityservicestothepowersystem,whileoptimisedhomebatteryandEVchargingallow
householdstointeractwiththegrid.Thesedevelopmentshelpimproveelectricitysupply
security and lower the cost of the energy transition by making it easier and cheaper to
integraterenewablesintothesystem.
Chapter 3 | Sectoral pathways to net-zero emissions by 2050 147
3
Figure 3.30 Global change in electricity demand by end-use in the buildings
sector
IEA.Allrightsreserved.
Energy efficiency is critical to mitigate electricity demand growth for appliances and air
conditioning, with savings more than offsetting the impact of electrifying heat
3.7.2 Keymilestonesanddecisionpoints
Table 3.5 Key milestones in transforming global buildings sector
Category
Newbuildings
From2030:allnewbuildingsarezero‐carbon‐ready.
Existingbuildings
From2030:2.5%ofbuildingsareretrofittedtobezero‐carbon‐readyeachyear.
Category 2020 2030 2050
Buildings
Shareofexistingbuildingsretrofittedtothezero‐carbon‐readylevel <1% 20% >85%
Shareofzero‐carbon‐readynewbuildingsconstruction 5% 100% 100%
Heatingandcooling
Stockofheatpumps(millionunits) 180 600 1800
Milliondwellingsusingsolarthermal 250 400 1200
Avoidedresidentialenergydemandfrombehaviour n.a. 12% 14%
Appliancesandlighting
Appliances:unitenergyconsumption(index2020=100) 100 75 60
Lighting:shareofLEDinsales 50% 100% 100%
Energyaccess
Populationwithaccesstoelectricity(billionpeople) 7.0 8.5 9.7
Populationwithaccesstocleancooking(billionpeople) 5.1 8.5 9.7
Energyinfrastructureinbuildings
DistributedsolarPVgeneration(TWh) 320 2200 7500
EVprivatechargers(millionunits) 270 1400 3500
10
20
30
2020 Activity Electrification Efficiency Behaviour 2050
ThousandTWh
Heatneeds Appliances Spacecooling Lighting
+101%
+37%
‐93%
‐9%
IEA. All rights reserved.
148 International Energy Agency | Special Report
Near‐termgovernmentdecisionsarerequiredforenergycodesandstandardsforbuildings,
fossil fuel phase out, use of low‐carbon gases, acceleration of retrofits and financial
incentivestoencourageinvestmentinbuildingsectorenergytransitions.Decisionswillbe
mosteffectiveiftheyfocusondecarbonisingtheentirevaluechain,takingintoaccountnot
onlybuildingsbutalsotheenergyandinfrastructurenetworksthatsupplythem,aswellas
widerconsiderationsincludingtheroleoftheconstructionsectorandurbanplanning.Such
decisionsarelikelytobringwiderbenefits,notablyinreducingfuelpoverty.
Near‐termgovernmentactionisneededtoensurethatzero‐carbon‐readybuildingsbecome
thenewnormacrosstheworldbefore2030forbothnewconstructionandretrofits.This
requires governments to act before 2025 to ensure that zero‐carbon‐ready compliant
buildingenergycodesareimplementedby2030atthelatest.Whilethisgoalappliestoall
regions,waystoachievezerocarbonreadybuildingsvarysignificantlyacrossregionsand
climate zones, and the same is true for heating and cooling technology strategies.
Governmentsshouldconsiderpavingthewaybymakingpublicbuildingszero‐carbon‐ready
inthecomingdecade.
Governmentswillneedtofindwaystomakenewzero‐carbon‐readybuildingsandretrofits
affordable and attractive to owners and occupants by overcomingfinancialbarriers,
addressingsplitincentivebarriersandminimisingdisruptiontobuildinguse.Buildingenergy
performancecertificates,greenleaseagreements,greenbondfinancingandpay‐as‐yousave
modelscouldallplayapart.
Makingzero‐carbon‐readybuildingretrofitsacentralpillarofeconomicrecoverystrategies
intheearly2020sisanoregretsactiontojumpstartprogress towards a zero‐emissions
buildingsector.Foregoingtheopportunitytomakeenergyuseinbuildingsmoreefficient
would drive up electricity demand linked to electrification of energy use in the buildings
sectorandmakedecarbonisingtheenergysystemsignificantlymoredifficultandmorecostly
(Box3.5).
Box 3.5
What would be the impact of global retrofit rates not rising to 2.5%?
DecarbonisingheatinginexistingbuildingsintheNZErestsuponadeepretrofitofthe
majority of the existing building stock. Having almost all buildings meet
zero‐carbon‐readybuildingenergycodesby2050would requireretrofitratesof2.5%
eachyearby2030,upfromlessthan1%today.Retrofitscanbedisruptiveforoccupants,
requirehighupfrontinvestmentandmayfacepermittingdifficulties.Theseissuesmake
achieving the required pace and depth of retrofits in the coming years the biggest
challengefacingthebuildingssector.
Any delay in reaching 2.5% of annual retrofits by 2030 would require such a steep
subsequent ramp up as to make retrofitting the vast majority of buildings by 2050
virtuallyimpossible.Modellingindicatesthatadelayoftenyearsintheaccelerationof
retrofitting,wouldincreaseresidentialspaceheatingenergydemandby25%andspace
Chapter 3 | Sectoral pathways to net-zero emissions by 2050 149
3
coolingdemandbymorethan20%,translatingtoa20%increaseinelectricitydemandin
2050relativetotheNZE(Figure3.31).Thiswouldputmorestrainonthepowersector,
which would need to install more low‐carbon generation capacity. Policies and fuel
switchingwouldstilldrivedownfossilfueldemandintheDelayedRetrofitCase,butan
additional15EJoffossilfuelswouldbeburnedby2050,emitting1GtofCO
2
.
Figure 3.31 Global residential space heating and cooling energy
demand in the NZE and Delayed Retrofit Case
IEA.Allrightsreserved.
Delays in the ramp up of retrofit rates and depth would be almost impossible to catch
up, placing further strain on the power sector and pushing up fossil fuel demand
Governmentsneedtoestablishpoliciesforcoalandoilboilersandfurnacesforspaceand
waterheating,whichintheNZEarenolongeravailableforsalefrom2025.Theyalsoneed
totake actionto ensure that new gasboilers areable to operatewithlowcarbongases
(hydrogenready)indecarbonisedgasnetworks.Thisputsapremiumontheavailabilityof
compellingalternativestothetypesofboilersbeingphasedout,includingtheuseofheat
pumps,efficientwoodstoves(usingsustainablesuppliesofwood),districtenergy,solarPV,
solar thermal and other renewable energy technologies. Which alternatives are best will
depend to some extent on local conditions, but electrification will be the most energy‐
efficient and cost‐effective low‐carbon option in most cases, and decarbonising and
expandingdistrictenergynetworksislikelytomakesensewheredensitiesallow.Theuseof
biomethaneorhydrogeninexistingorupgradedgasnetworksmaybethebestoptionin
areaswheremoreefficientalternativesarenotpossible.
Governmentsalsofacedecisionsonminimumenergyperformancestandards(MEPS).The
NZE sees all countries introduce MEPS for all main appliance categories set at the most
stringentlevelsprevailinginadvancedeconomiesby2025atthelatest.Amongothers,this
wouldmeanendingthesaleofincandescent,halogenandcompactfluorescentlampsbythat
3
6
9
12
15
18
2020 2025 2030 2035 2040 2045 2050
EJ
NZE DelayedRetrofitCase
Fossilfuels
Electricityanddistrictheat
IEA. All rights reserved.
150 International Energy Agency | Special Report
time.SettingMEPSattherightlevelwillrequirecarefulplanning;internationalcollaboration
toalignstandardsandobjectivescouldplayahelpfulroleinkeepingcostsdown.
ThesystemicnatureoftheNZEmeansthatstrategiesandpoliciesforbuildingswillworkbest
iftheyarealignedwiththosebeingadoptedforpowersystems,urbanplanningandmobility.
Thiswouldhelptoensurethesuccessfulscalingupofbuilding‐integratedPVtechnologies,
battery storage and smart controls to make buildings active serviceproviderstogrids.It
would also help to foster the deployment of smart EV charging infrastructure. Policies
incentivisingdenseandmixed‐useurbanplanningcoupledwitheasyaccesstolocalservices
andpublictransportcouldreducerelianceonpersonalvehicles(seeChapter2).Thereare
also links between buildings strategies and measures to reduce the embodied carbon
emissionsofnewconstruction,whichfallsby95%by2050intheNZE.
Chapter 4 | Wider implications of achieving net-zero emissions 151
Chapter4
Wider implications of achieving net-zero emissions
Economy:InourNet‐ZeroEmissionsby2050 Scenario (NZE),globalCO
2
emissions
reachnetzeroby2050andinvestmentrisesacrosselectricity,low‐emissionsfuels,
infrastructureandend‐usesectors.Cleanenergyemploymentincreasesby14million
to2030,butemploymentinoil,gasandcoaldeclinesbyaround5million.Thereare
varyingresultsfordifferentregions,withjobgainsnotalwaysoccurringinthesame
place,ormatchingthesameskillset,asjoblosses.Theincreaseinjobsandinvestment
stimulateseconomicoutput,resultinginanetincreaseinglobalGDPto2030.Butoil
andgasrevenuesinproducereconomiesare80%lowerin2050thaninrecentyears
andtaxrevenuesfromretailoilandgassalesinimportingcountriesare90%lower.
Energyindustry:Thereisamajorcontractioninfossilfuelproduction,butcompanies
that produce these fuels have skills and resources that could play a key role in
developingnewlow‐emissionsfuelsandtechnologies.Theelectricityindustryscales
uptomeetdemandrisingovertwo‐and‐a‐half‐foldto2050andbecomesmorecapital
intensive, focusing on renewables, sources of flexibility and grids. Large energy‐
consumingcompanies,vehiclemanufacturersandtheirsuppliersadjustdesignsand
retoolfactorieswhileimprovingefficiencyandswitchingtoalternativefuelsupplies.
Forcitizenswholackaccesstoelectricityandcleancooking,theNZEdeliversuniversal
accessby2030.ThiscostsaroundUSD40billionayearoverthenextdecadeandadds
lessthan0.2%toCO
2
emissions.Forcitizenstheworldover,theNZEbringsprofound
changes,andtheiractivesupportisessentialifitistosucceed.Aroundthree‐quarters
ofbehaviouralchangesintheNZEcanbedirectlyinfluencedor mandated by
governmentpolicies.Thecostofenergyisalsoanimportantissueforcitizens,andthe
proportionofdisposablehouseholdincomespentonenergyovertheperiodto2050
remains stable in emerging market and developing economies, despitealarge
increaseindemandformodernenergyservices.
Governmentactioniscentraltoachievenetzeroemissionsgloballyby2050; it
underpinsthedecisionsmadebyallotheractors.Fourparticularpointsareworth
stressing.First,theNZEdependsonactionsthatgofarbeyondtheremitofenergy
ministers,andrequiresaco‐ordinatedcross‐governmentapproach.Second,thefall
inoilandgasdemandintheNZEmayreducesometraditionalenergysecurityrisks,
buttheydonotdisappear,whilepotentialnewvulnerabilitiesemergefromincreasing
relianceonelectricitysystemsandcriticalminerals.Third,acceleratedinnovationis
needed. The emissions cuts to 2030 in the NZE can be mostly achieved with
technologiesonthemarkettoday,butalmosthalfofthereductionsin2050depend
on technologies that are currently under development. Fourth, an unprecedented
level of international co‐operation is needed. This helps to accelerate innovation,
develop international standards and facilitate new infrastructure to link national
markets.Without the co‐operation assumed in the NZE,the transition to net‐zero
emissionswouldbedelayedbydecades.
SUMMARY
IEA. All rights reserved.
152 International Energy Agency | Special Report
4.1 Introduction
Achievingnet‐zeroemissionsby2050isamonumentaltask,especiallyagainstabackdropof
increasing economic and population growth. It calls for an unwavering focus from all
governments,workingtogetherwithindustriesandcitizens,toensurethatthetransitionto
globalnet‐zeroemissionsproceedsinaco‐ordinatedwaywithoutdelay.Inthischapter,we
lookatwhatthechangesthatdelivernet‐zeroemissionsgloballyby2050intheNZEwould
meanfortheeconomy,theenergyindustry,citizensandgovernments.
Figure 4.1
Selected global milestones for policies, infrastructure and
technology deployment in the NZE
IEA.Allrightsreserved.
There are multiple milestones on the way to global net-zero emissions by 2050.
If any sector lags, it may prove impossible to make up the difference elsewhere.
‐5
0
5
10
15
20
25
30
35
40
2020 2025 2030 2035 2040 2045 2050
GtCO₂
Buildings Transport Industry Electricityandheat Other
2045
150 Mtlow‐carbonhydrogen
850GWelectrolysers
435Mtlow‐carbonhydrogen
3000GWelectrolysers
4GtCO
2
captured
Phase‐outof
unabatedcoalin
advancedeconomies
2030
Universalenergyaccess
60%ofglobalcar
salesareelectric
1020GWannualsolar
andwindadditions
Allnewbuildingsare
zero‐carbon‐ready
Mostnewclean
technologiesinheavy
industrydemonstrated
atscale
Allindustrial
electricmotorsales
arebestinclass
NonewICEcarsales
2035
Overallnet‐zero
emissionselectricityin
advancedeconomies
Mostappliancesand
coolingsystemssold
arebestinclass
50%ofheavytruck
salesareelectric
7.6GtCO
2
captured
Nonewunabated
coalplantsapproved
fordevelopment
2021
2025
Nonewsalesof
fossilfuelboilers
2040
Morethan90%of
heavyindustrial
productionis
low‐emissions
2050
Almost70%of
electricitygeneration
globallyfromsolarPV
andwind
Morethan85%
ofbuildingsare
zero‐carbon‐ready
50%ofheatingdemand
metbyheatpumps
Phase‐outofall
unabatedcoalandoil
powerplants
Net‐zeroemissions
electricityglobally
50%offuelsused
inaviationare
low‐emissions
Around90%ofexisting
capacityinheavy
industriesreachesend
ofinvestmentcycle
50%ofexisting
buildingsretrofitted
tozero‐carbon‐ready
levels
Nonewoilandgas
fieldsapprovedfor
development;no
newcoalminesor
mineextensions
Chapter 4 | Wider implications of achieving net-zero emissions 153
4
Wide‐rangingmeasuresandregulationsintheNZEhelptoinfluenceorchangethepurchases
thatindividualsmake,thewaytheyheatandcooltheirhomes,andtheirmeansoftransport.
Manyindustries,especiallythosethatarecurrentlyinvolvedintheproductionofenergyor
are large‐scale users of energy, also face change. Some of the shifts for individuals and
industriesmaybeunpopular, underscoring thefactthat itis essential toensurethatthe
energytransitionistransparent,justandcost‐effective,andtopersuadecitizensoftheneed
forreform.Thesechangesdeliversignificantbenefits.Therearearound790millionpeople
whodonothaveaccesstoelectricitytodayand2.6billionpeoplewhodonothaveaccessto
cleancookingoptions.TheNZEshowshowemissionsreductionscangohand‐in‐handwith
effortstoprovideuniversalaccesstoelectricityandcleancooking,andtoimproveairquality.
Itprovidessignificantopportunitiestoo,withcleanenergytechnologiesprovidingmanynew
business opportunities and jobs, and with innovations that stimulate new industrial
capacities.
Underpinning all of these changesaredecisionstakenbygovernments. This will require
wholeheartedbuy‐infromalllevelsofgovernmentandfromallcountries.Themagnitudeof
thechangesrequiredtoreachglobalnet‐zeroemissionsby2050arenotwithinthepowerof
governmentenergyorenvironmentdepartmentsalonetodeliver,norwithinthepowerof
individual countries. It will involve an unprecedented level of global collaboration, with
recognition of and sensitivity to differences in the stages of development of individual
countries, and an appreciation of the difficulties faced by particular communities and
membersofsociety,especiallythosewhomaybenegativelyaffectedbythetransitionto
net‐zeroemissions.IntheNZE,governmentsstartbysettingunequivocallong‐termtargets,
ensuringthatthesearefullysupportedfromtheoutsetbyexplicit,near‐termtargetsand
policymeasuresthatclearlysetoutthepathway,andthatrecogniseeachcountry’sunique
starting conditions, to support the deployment of new infrastructure and technologies
(Figure4.1).
4.2 Economy
4.2.1 Investmentandfinancing
Thetransitiontonet‐zeroemissionsby2050requiresasubstantialrampupintheinvestment
of electricity, infrastructure and the end‐use sectors. The largestincreaseoverthenext
decadeisinelectricitygeneration:annualinvestmentincreasesfromaboutUSD0.5trillion
overthepastfiveyearstoUSD1.6trillionin2030(Figure4.2).By2030,annualinvestment
in renewables in the electricity sector is around USD1.3trillion, slightly more than the
highestleveleverspentonfossilfuelsupply(USD1.2trillionin2014).Annualinvestmentin
cleanenergyinfrastructureincreasesfromaroundUSD290billionoverthepastfiveyearsto
about USD880billion in 2030. This is forelectricity networks, public electric vehicle(EV)
chargingstations,hydrogenrefuellingstationsandimportandexportterminals,directair
capture and CO
2
pipelines and storage facilities. Annual investment in low‐carbon
technologiesinend‐usesectorsrisesfromUSD530billioninrecentyearstoUSD1.7trillion
IEA. All rights reserved.
154 International Energy Agency | Special Report
in2030.
1
Thisincludesspendingondeepretrofittingofbuildings,transformationofindustrial
processes,andthepurchaseofnewlow‐emissionsvehiclesandmoreefficientappliances.
After 2030, annual electricity generation investment falls by one‐third to 2050. A lot of
infrastructureforalow‐emissionselectricitysectorisestablishedwithinthefirstdecadeof
theNZE,andthecostofrenewablescontinuestodeclineafter2030.Inend‐usesectors,there
arecontinuedincreasesininvestmentinEVs,carboncapture,utilisationandstorage(CCUS)
andhydrogenuseinindustryandtransport,andmoreefficientbuildingsandappliances.
GlobalinvestmentinfossilfuelsupplyfallssteadilyfromaboutUSD575billiononaverage
over the past five years to USD110billion in 2050 in the NZE, with upstream fossil fuel
investmentrestrictedtomaintainingproductionatexistingoilandnaturalgasfields.This
investmentreflectsthefactthatfossilfuelsarestillusedin2050intheNZEinprocesses
where they are paired with CCUS, in non‐emitting processes (such as petrochemical
manufacturing), and in sectors where emissions reductions are most challenging (with
emissionsoffsetbycarbondioxideremoval).Investmentinlowemissionsfuelsincreases
morethanthirty‐foldbetween2020and2050,reachingaboutUSD135billionin2050.This
issplitroughlyequallybetweentheproductionofhydrogenandhydrogen‐basedfuels,and
theproductionofbiofuels.
Overthe2021‐50periodintheNZE,annualaveragetotalenergysectorinvestmentasashare
of gross domestic product (GDP) is around 1% higher than over thepastfiveyears.The
private sector is central to finance higher investment needs. It requires enhanced
collaborationbetweendevelopers,investors,publicfinancialinstitutionsandgovernments.
Collaborationwillbeespeciallyimportantoverthenextfivetotenyearsforthedevelopment
oflargeinfrastructureprojectsandfortechnologiesinthedemonstrationorprototypephase
todaysuchassomehydrogenandCCUSapplications.Companiesandinvestorshavedeclared
strong interest to invest in clean energy technologies, but turning interest into actual
investmentatthelevelsrequiredintheNZEalsodependsonpublicpolicies.
Someobstaclestoinvestmentneedtobetackled.Manyemergingmarketanddeveloping
economies are reliant on public sources to finance energy projects and new industrial
facilities.Insomecases,improvementsinregulatoryandpolicyframeworkswouldfacilitate
theinternational flow of long‐termcapital to supportthe development of both new and
existingcleanenergytechnologies.Therapidgrowthininvestmentintransportandbuildings
intheNZEpresentsadifferentkindofchallengeforpolicymakers.Inmanycases,anincrease
incapitalspendingforanefficientapplianceorlow‐emissionsvehiclewouldbemorethan
offset by lower expenditure on fuels and electricity over the product lifetime, but some
low‐incomehouseholdsandsmallandmediumenterprisesmaynotbeabletoaffordthe
upfrontcapitalrequired.
1
Investmentlevelspresentedinthisreportincludeabroaderaccounting of efficiency improvements in
buildingsanddifferfromthatreportedintheIEAWorldEnergyInvestmentreport(IEA,2020a).Enduse
efficiencyinvestmentsaretheincrementalcostofimprovingtheenergyperformanceofequipmentrelative
toaconventionaldesign.
Chapter 4 | Wider implications of achieving net-zero emissions 155
4
Figure 4.2 Global average annual energy investment needs by sector and
technology in the NZE
IEA.Allrightsreserved.
Investment increases rapidly in electricity generation, infrastructure and end-use sectors.
Fossil fuel investment drops sharply, partly offset by a rise in low-emissions fuels.
Notes:CCUS=carboncapture,utilisationandstorage;EV=electricvehicle.Infrastructureincludeselectricity
networks, public EVcharging, CO
2
pipelines andstoragefacilities,direct air captureandstoragefacilities,
hydrogenrefuellingstations,andimportand exportterminalsforhydrogen andfossilfuelspipelinesand
terminals.End‐useefficiencyinvestmentsaretheincrementalcostofimprovingtheenergyperformanceof
equipmentrelativetoaconventionaldesign.
4.2.2 Economicactivity
The energy transition required for net‐zero emissions by 2050 will affect all economic
activitiesdirectlyorindirectly.IncoordinationwiththeInternationalMonetaryFund,we
havemodelledthemedium‐termglobalmacroeconomicimpactofthechangesintheenergy
0.5 1.0 1.5 2.0 2.5
2016‐20
2021‐30
2031‐40
2041‐50
2016‐20
2021‐30
2031‐40
2041‐50
2016‐20
2021‐30
2031‐40
2041‐50
2016‐20
2021‐30
2031‐40
2041‐50
Oil
Naturalgas
Coal
Low‐emissionsfuels
FossilfuelswithoutCCUS
FossilfuelswithCCUS
Nuclear
Renewables
Batterystorage
Electricitygrids
EVchargers
Hydrogeninfrastructure
Fossilfuels
Directaircapture
CO₂transportandstorage
#REF!
Renewables
Hydrogen
Efficiency
Electrification
Fossilfuelsandothers
CCUS
Electricity
TrillionUSD(2019)
Fuels
End‐use
Infrastructure
IEA. All rights reserved.
156 International Energy Agency | Special Report
sectorthatoccurintheNZE.Thisanalysisshowsthatthesurgeinprivateandgovernment
spending on clean energy technologies in the NZE creates a large number of jobs and
stimulateseconomicoutputintheengineering,manufacturingandconstructionindustries.
ThisresultsinannualGDPgrowththatisnearly0.5%higherthanthelevelsintheStated
PoliciesScenario(STEPS)
2
duringlatterhalfofthe2020s(Figure4.3).
3
Figure 4.3
Change in annual growth rate of global GDP in the NZE relative
to the STEPS
IEA.Allrightsreserved.
The surge in government and private investment in the NZE has a positive impact
on global GDP, but there are large differences between regions
Notes:GDP=grossdomesticproduct.Reductioninrentsstemmainlyfromlowerfossilfuelincome.
Source:IEAanalysisbasedonIMF.
Therearelargedifferencesinmacroeconomicimpactsbetweenregions.Thedeclineinfossil
fueluseandpricesresultsinafallinGDPintheproducereconomies,
4
whererevenuesfrom
oilandgassalesoftencoveralargeshareofpublicspendingoneducation,healthcareand
otherpublicservices.Thedropinoilandgasdemand,andtheconsequentfallininternational
prices for oil and gas, cause net income in producer economies todroptohistoriclows
(Figure4.4).Somecountrieswiththelowestcostoilresources(includingmembersofthe
2
TheIEAStatedPoliciesScenarioistheprojectionfortheglobalenergysystembasedonthepoliciesand
measures that governments around the world have already put in place and on announced policies as
expressedinofficialtargetsandplans,suchasNationallyDeterminedContributionsputforwardunderthe
ParisAgreement(seeChapter1).
3
Theestimatedgeneralequilibriummacroeconomicimpactoftheincreaseinpublicandprivateinvestment
and the reduction in oil‐related revenue contained in the NZE has been provided by the International
MonetaryFundusingitsGlobalIntegratedMonetaryandFiscalModel(GIMF).
4
Producereconomiesarelargeoilandgasexportersthatrelyonhydrocarbonrevenuestofinanceasignificant
proportionoftheirnationalbudgets,includingcountriesintheMiddleEast,RussiaandtheCaspianregion.
‐0.1%
0.0%
0.1%
0.2%
0.3%
0.4%
0.5%
2021‐25 2026‐30
Privateinvestment
Governmentinvestment
Reductioninrent
Netchange
Chapter 4 | Wider implications of achieving net-zero emissions 157
4
Organization of the Petroleum Exporting Countries [OPEC]) gain market share in these
circumstances,buteventheywouldseelargefallsinrevenues.Structuralreformswouldbe
needed to address the societal challenges, including those to accelerate the process of
reforming inefficient fossil fuel subsidies and to speed up moves to use hydrocarbon
resources to produce low‐emissionsfuels,e.g.hydrogenandhydrogen‐based fuels (see
section4.3.1).
Figure 4.4
Income from oil and gas sales in producer economies in the NZE
IEA.Allrightsreserved.
Structural reforms and new sources of revenue are needed in producer economies,
but these are unlikely to compensate fully for a large drop in oil and gas income
ThemacroeconomiceffectsoftheNZEareveryuncertain.Theydependonahostoffactors
including:howgovernmentexpenditureisfinanced;benefitsfromimprovementstohealth;
changesinconsumerbills;broadimpactofchangesinconsumerbehaviour;andpotential
for productivityspill‐overs from accelerated energy innovation.Nonetheless, impacts are
likelytobelowerthanassessmentsofthecostofclimatechangedamages(OECD,2015).It
isalsolikelythataco‐ordinated, orderlytransitioncanbeexecutedwithout majorglobal
systemicfinancialimpacts,butthiswillrequirecloseattentionfromgovernments,financial
regulatorsandthecorporatesector.
4.2.3 Employment
EmploymentintheenergysectorshiftsmarkedlyintheNZEinresponse to changes in
investmentandspendingonenergy.Weestimatethattodayroughly 40million people
around the world work directly in the oil, gas, coal, renewables, bioenergy and energy
networkindustries(IEA,2020b).IntheNZE,cleanenergyemploymentincreasesby14million
0.4
0.8
1.2
1.6
2.0
200
400
600
800
1000
1971‐
80
1981‐
90
1991‐
00
2001‐
10
2011‐
20
2021‐
30
2031‐
40
2041‐
50
ThousandUSDpercapita
BillionUSD(2019)
Oil Naturalgas Percapitaincome(rightaxis)
IEA. All rights reserved.
158 International Energy Agency | Special Report
to2030, while employment inoil,gasand coalfuelsupply and powerplantsdeclines by
around5million,leadingtoanetincreaseofnearly9millionjobs(Figure4.5).
Figure 4.5
Global energy sector employment in the NZE, 2019-2030
IEA.Allrightsreserved.
Overall employment in the energy sector increases by almost 9 million to 2030
as jobs created in clean energy sectors outpace losses in fossil fuels
Jobscreatedwouldnotnecessarilybeinthesameareawherejobsarelost,plustheskillsets
requiredforthecleanenergyjobsmaynotbedirectlytransferable.Joblosseswouldbemost
pronounced in communities that are heavily dependent on fossil energy production or
transformation activities. Even where the number of direct energy jobs lost is small, the
impactonthelocaleconomymaybesignificant.Governmentsupportwouldalmostcertainly
beneededtomanagethesetransitionsinajust,people‐centredway.Inpreparation,abetter
understandingofcurrentenergyindustryemploymentisneeded.Ausefulactionwouldbe
for governments to adopt more detailed surveying approaches for energy industry
employment,suchasthoseusedintheUSEnergy&EmploymentReport(NASEOandEnergy
FuturesInitiative,2021).
Inadditiontothe14millionnewcleanenergyjobscreatedintheNZE,othernewjobsare
createdbychangesinspendingonmoreefficientappliances,electricandfuelcellvehicles,
and building retrofits and energy‐efficient construction. Thesechangeswouldrequirea
further16millionworkers,meaningthattherewouldbe30millionmorepeopleworkingin
cleanenergy, efficiency and low‐emissionstechnologies by 2030 inthe NZE(Figure4.6).
5
Investment in electricity generation, electricity networks, EV manufacturing and energy
efficiency are among the areas that will open up new employment opportunities. For
example,jobsinsolarandwindmorethanquadrupleintheNZEovercurrentlevels.Nearly
two‐thirdsofworkersinthesesectorsby2030intheNZEwouldbehighlyskilledandthe
 
5
Thisincludesnewjobsandjobsfilledbymovingcurrentemploymentfromonetypeofproductiontoanother.
10
20
30
40
50
60
2019 2030
Millionjobs
Bioenergy
Electricity
Coal
Oilandgas
Losses
Growth
Chapter 4 | Wider implications of achieving net-zero emissions 159
4
majorityrequiresubstantialtraining.Inaddition,withthemorethandoublingoftotalenergy
investment,newemploymentopportunitieswillariseinassociatedareassuchaswholesale
trading,financialandlegalservices.
Inmanycasesitmaybepossibletoshiftworkerstonewproduct lines within the same
company,forexampleinvehiclemanufacturingasproductionreconfigurestoEVs.However,
therewouldbelargerrisksforspecialisedsupplychaincompaniesthatprovideproductsand
services,e.g. internal combustionengines thatare replaced bynewcomponentssuchas
batteries.
Figure 4.6
New workers in clean energy and related sectors and shares by
skill level and occupation in the NZE and the STEPS in 2030
IEA.Allrightsreserved.
About 30 million new workers are needed by 2030 to meet increased demand for clean
energy, efficiency, and low-emissions technologies; over half are highly skilled positions
Note:EVs=electricvehicles.
The new jobs created in the NZE tend to have more geographic flexibility and a wider
distributionthanisthecasetoday.Around40%arejobslocatedclosetowheretheworkis
being done, e.g. building efficiency improvements or wind turbine installation, and the
remaining are jobs tied to manufacturing sites. Today the manufacturing capacity for a
number of clean energy technologies, such as batteries and solar photovoltaic panels, is
concentrated in particular areas, notably China. The rapid increase in demand for clean
energytechnologiesintheNZErequiresnewproductioncapacitytocomeonlinethatcould
belocatedinanyregion.Thosecountriesandcompaniesthatmovefirstmayenjoystrategic
advantagesincapturingburgeoningdemand.
10 20 30
STEPS
NZE
Grids
Powergeneration
EVs
Bioenergyproduction
Efficiency
End‐userenewables
Innovativetechnologies
Additional workers incleanenergy andrelatedsectors(millions)
Skilllevel
Occupation
20% 40% 60% 80% 100%
Professional
38%
Construction
23%
High65% Medium27% Low8%
Positions byoccupationandskilllevelintheNZE
Manufacturing
28%
Other
12%
IEA. All rights reserved.
160 International Energy Agency | Special Report
4.3 Energyindustry
4.3.1 Oilandgas
The energy transition envisionedintheNZEinvolvesamajorcontraction of oil and gas
productionwithfar‐reachingimplicationsforallthecompaniesthatproducethesefuels.Oil
demandfallsfromaround90millionbarrelsperday(mb/d)in2020to24mb/din2050,while
naturalgasdemandfallsfrom3900billioncubicmetres(bcm)toaround1700bcm.Nofossil
fuel exploration is required in the NZE as no new oil and natural gas fields are required
beyondthosethathavealready been approved fordevelopment.This represents aclear
threattocompanyearnings,buttherearealsoopportunities.Theresourcesandskillsofthe
oilandgasindustryareagoodmatchwithsomeofthenewtechnologiesneededtotackle
emissionsinsectorswherereductionsarelikelytobemostchallenging,andtoproducesome
ofthelowemissionsliquidsandgasesforwhichthereisarapidincreaseindemandinthe
NZE(seeChapter2).Bypartneringwithgovernmentsandotherstakeholders,theoilandgas
industrycouldplayaleadingroleindevelopingthesefuelsandtechnologiesatscale,andin
establishingnewbusinessmodels.
Theoilandgasindustryishighlydiverse,andvariouscompaniescouldpursueverydifferent
strategiesinthetransitiontonet‐zeroemissions.Minimisingemissionsfromcoreoilandgas
operations however should be a first‐order priority for all oil and gas companies. This
includestacklingmethaneemissionsthatoccurduringoperations(theyfallby75%between
2020and2030intheNZE)andeliminatingflaring.Companiesshouldalsoelectrifyoperations
usingrenewableelectricitywhereverpossible,eitherbypurchasingelectricityfromthegrid
or by integrating off‐grid renewable energy sources into upstream facilities or transport
infrastructure. Producers that can demonstrate strong and effective action to reduce
emissionscancrediblyarguethattheiroilandgasresourcesshouldbepreferredoverhigher
emissionsoptions.
Someoilandgascompaniesmaychoosetobecome“energycompanies”focusedonlow‐
emissionstechnologiesandfuels,includingrenewableelectricity,electricitydistribution,EV
chargingandbatteries.Severaltechnologiesthatarecriticaltotheachievementofnet‐zero
emissions,suchasCCUS,hydrogen,bioenergyandoffshorewind,lookespeciallywell‐suited
tosomeoftheexistingskills,competenciesandresourcesofoilandgascompanies.
Carboncapture,utilisationandstorage.Theoilandgasindustryisalreadytheglobal
leaderindevelopinganddeployingCCUS.Ofthe40milliontonnes(Mt)ofCO
2
captured
today at large‐scale facilities, around three‐quarters is captured from oil and gas
operations,whichoftenproduceconcentratedstreamsofCO
2
thatarerelativelyeasy
andcosteffectivetocapture(IEA,2020c).Theoilandgasindustryalsohasthelarge
scaleengineering,pipeline,sub‐surfaceandprojectmanagementskillsandcapabilities
tohandlelargevolumesofCO
2
andtohelpscaleupthedeploymentofCCUS.
Chapter 4 | Wider implications of achieving net-zero emissions 161
4
Low‐emissions hydrogen and hydrogen‐based fuels. Oil and gas companies could
contribute to developing and deploying low‐emissions hydrogen in several ways
(IEA,2019a).Nearly40%ofhydrogenproductionin2050intheNZEisfromnaturalgas
infacilitiesequippedwithCCUS,providinganimportantopportunityforcompaniesand
countriestoutilisetheirnaturalgasresourcesinawaythatisconsistentwithnet‐zero
emissions.Ofthetotaloutputof530Mtofhydrogenin2050,about30%isprocessed
into ammonia and synthetic fuels (equivalent to around 7.5mboe/d). The
transformation processes involved have many potential synergies with the skills and
equipmentusedinoilandgasprocessingandrefining.Oilandgascompaniesalsohave
longexperienceoftransportingliquidsandgasesbypipelineandships.
Advanced biofuels and biomethane.Theproductionofadvancedbiofuelsgrows
substantially in the NZE, but this depends critically on continued technological
innovation.ManyoilandgascompanieshaveactiveR&Dprogrammesintheseareas
and could become leading producers. Biomethane – a low‐emissions alternative to
naturalgas–canbeproducedinlargecentralisedfacilities,whichcouldbeagoodfit
withtheknowledgeandtechnicalexpertiseofexistinggasproducers(IEA,2020d).
Offshore wind. About 40%of the lifetimecosts of a standard offshore wind project
involvesignificantsynergieswiththeoffshoreoilandgassector(IEA,2019b).Theoiland
gasindustryhasconsiderableexperienceofworkinginoffshorelocations,whichcould
beofvalueintheconstructionoffoundationsandsubseastructuresforoffshorewind
farms,especiallywhenusingvesselsduringinstallationandoperation.Theexperience
ofmaintainingsafetystandardsinoilandgascompaniescouldalsobehelpfulduring
maintenanceandinspectionofoffshorewindfarmsoncetheyareinoperation.
Oil and gas companies are well‐placedtoacceleratethepaceof development and
deploymentofthesetechnologies,andtogainacommercialedgeoverothercompanies.In
theNZE,investmentinlow‐emissionstechnologiessuitedtotheskillsandexpertiseofoil
andgascompaniesexceedsthatintraditionaloilandgasoperationsby2030.Totalcapital
spending on these technologies and on traditional oil and gas operations averages
USD650billionperyearover2021‐50,justlessthanannualinvestmentinoilandgasprojects
between2016and2020(Figure4.7).
Notalloilandgascompanieswillchoosetofollowastrategyofdiversifyingintoothertypes
ofenergy.Forexample,itisfarfromcertainthatnationaloilcompanieswillbechargedby
theirstateownerstodiversifyanddeveloplow‐emissionsenergysourcesoutsidetheircore
area of activity; other companies may decide simply to concentrate on supplying oil and
naturalgasascleanlyandefficientlyaspossible,andtoreturnincometoshareholders.What
isclear,however,isthatnooilandgascompanywouldbeunaffectedbytheNZEandthat
allpartsoftheindustryneedtodecidehowtorespond(IEA,2020e).
IEA. All rights reserved.
162 International Energy Agency | Special Report
Figure 4.7 Annual average investment in oil and gas and low-emissions
technologies with synergies for the oil and gas industry in the NZE
IEA.Allrightsreserved.
Investment in low-emissions technologies suited to the skills and expertise of
oil and gas companies exceeds investment in traditional operations by 2030
Note:CCUS=carboncapture,utilisationandstorage.
4.3.2 Coal
TheprecipitousdeclineincoaluseprojectedintheNZEwouldhavemajorimplicationsfor
the future of mining companies and countries with large existing production capacities.
Around470milliontonnesofcoalequivalent(Mtce)ofcoalusedintheNZEin2050isin
facilitiesequippedwithCCUS(80%ofglobalcoaldemandin2050),whichpreventsaneven
sharperdeclineindemand.ButnonewcoalminesormineextensionsareneededintheNZE.
Retrainingandregionalrevitalisationprogrammeswouldbeessentialtoreducethesocial
impact of job losses at the local level and to enable workers and communities to find
alternative livelihoods. There could also be opportunities to locate new clean energy
facilities,includingthenewprocessingfacilitiesthatareneededforcriticalminerals,inthe
areasmostaffectedbymineclosures.
Forminingcompanies,however,thecontractionincoaldemandintheNZEcouldbeoffset
bytheneedtoincreaseminingofotherrawminerals,includingthosevitaltomanyclean
energy technologies, such as copper, lithium and nickel (IEA, 2021a). Global demand for
thesecriticalmineralsrisesrapidlyintheNZE(Figure4.8).Forexample,demandforlithium
foruseinbatteriesexpandsbyafactorof30by2030,whiledemandforrareearths,primarily
usedformakingEVmotorsandwindturbines,increasesbyafactoroftenby2030.Critical
mineralresourcesarenotalwayslocatedinthesamelocationsorcountriesasexistingcoal
mines,buttheskillsandexperienceofminingcompanieswillbeessentialtoensurethatthe
supplyofthesemineralsisabletomatchdemandatreasonableprices.Bythe2040s,thesize
oftheglobalmarketforthesemineralsapproachesthatforcoaltoday.
200
400
600
800
2016‐
20
2021‐
30
2031‐
40
2041‐
50
2016‐
20
2021‐
30
2031‐
40
2041‐
50
BillionUSD(2019)
Oil Naturalgas CCUS Hydrogen Bioenergy Offshorewind
Oilandnaturalgas
Low‐emissionstechnologies
Chapter 4 | Wider implications of achieving net-zero emissions 163
4
Figure 4.8 Global value of coal and selected critical minerals in the NZE
IEA.Allrightsreserved.
The market for critical minerals approaches that of coal today in the 2040s
Notes:Includestotalrevenueforcoalandforselectedcriticalmineralsusedincleanenergytechnologies.The
pricesofcriticalmineralsarebasedonconservativeassumptionsaboutcostincreases(arounda10%‐20%
increasefromcurrentlevelsto2050).
4.3.3 Electricity
Gettingtonet‐zeroemissionscallsforamassiveexpansionoftheelectricitysectortopower
theneedsofagrowingglobaleconomy,theelectrificationofend‐usesthatpreviouslyused
fossilfuels,andtheproductionofhydrogenfromelectrolysis.Whileelectricitydemand
increasesmorethantwo‐and‐a‐halftimes,therapidtransformationoftheindustrymeans
thattotalelectricitysupplycoststriplefrom2020to2050intheNZE,raisingaveragecosts
perunitofelectricitygenerationmodestly(Figure4.9).
The electricity supply industry also becomes much more capital intensive, accelerating a
recenttrend.Theshareofcapitalintotalcostsrisesfromlessthan60%in2020(alreadyten
percentagepointshigherthanin2010)toabout80%in2050.Thisislargelyduetoamassive
increaseinrenewableenergyandthecorrespondingneedformorenetworkcapacityand
sourcesofflexibility,includingbatterystorage.Inthelate2020sand2030s,theupgrading
and replacement of existing solar and wind capacity as they cometotheendoftheir
operatinglivesalsoboostscapitalneeds.
6
Newnuclearpowercapacityadditionsaddfurther
capitalspendingintheNZE.Therisingcapitalintensityoftheelectricityindustryincreases
theimportanceoflimitingriskfornewinvestmentandensuringsufficientrevenuesinall
yearsforgridoperatorstofundrisinginvestmentneeds–apointunderlinedbythefinancial
difficultiesexperiencedbysomenetworkcompanies in 2020duetodepressedelectricity
demandresultingfromtheCovid‐19crisis(IEA,2020f).
 
6
They typically need replacing after 25‐30 years of operation, whereas many conventional hydropower,
nuclearandcoalplantsoperatefarlongeralbeitwithperiodicadditionalinvestment.
100
200
300
400
500
BillionUSD(2019)
Coal
Rareearth
Silicon
Manganese
Cobalt
Graphite
Nickel
Lithium
Copper
Critical minerals
2020 2030 2040 2050
IEA. All rights reserved.
164 International Energy Agency | Special Report
Figure 4.9 Global electricity supply costs by component in the NZE
IEA.Allrightsreserved.
Electricity system costs triple to 2050, raising average supply costs modestly;
the massive growth of renewables makes the industry more capital intensive
Notes:Electricitysupplycostsincludeallthedirectcoststoproduceandtransmitelectricitytoconsumers.
Batterystoragesystemsareincludedinpowerplantcapitalrecovery.
Therisingshareofrenewablesintheelectricitygenerationmixhasimportantimplications
for the design of electricity markets. When the shares of solar, wind, other variable
renewablesandnuclearpowerreachhighlevels,availableelectricitysupplyatnomarginal
costisoftenaboveelectricitydemand,resultinginawholesalepriceofelectricitythatiszero
orevennegative.By2050,withoutchangesinelectricitymarketdesign,about7%ofwind
andsolaroutputintheNZEwouldbeaboveandbeyondwhatcanbeintegrated(andso
curtailed),andtheshareofzero‐pricehoursintheyearwouldincreasetoaround30%in
majormarketsfromclosetozerotoday,despitetheactiveuseofdemandresponse.Ifthe
shareofrenewablesintheelectricitygenerationmixistoriseasenvisionedintheNZE,it
wouldthereforebehighlydesirabletoeffectsignificantchangesinthedesignofelectricity
marketssoastoprovidesignalsforinvestment,includinginvestmentinsourcesofflexibility
suchasbatterystorageanddispatchablepowerplants.
Theincreaseinelectricityuseinevitablyraisesassociatedcosts.Operatingandmaintaining
powerplantsworldwidecostsclosetoUSD1trillionin2050intheNZE,two‐and‐a‐halftimes
thelevelin2020.In2020,upkeepatfossilfuelpowerplantsaccountedforUSD150billion,
and renewables required nearly as much, mostly for hydropower. By 2050, the cost of
operatingandmaintainingrenewablesreachesUSD780billion,mostitneededforwindand
solarphotovoltaics(PV)asaresultoftheirmassivescalingup:offshorewindaloneaccounts
forUSD90billion.
20
40
60
80
100
120
1
2
3
4
5
6
2010 2020 2030 2040 2050
USDperMWh(2019)
Grids Powerplantcapitalrecovery
Powerplantoperationsandmaintenance Fuel
CO₂price Averagecost(rightaxis)
TrillionUSD(2019)
20%
40%
60%
80%
100%
2010 2020 2030 2040 2050
Chapter 4 | Wider implications of achieving net-zero emissions 165
4
Thesharpreductionoffossilfueluseintheelectricityindustryandlowerfuelpricesmean
thatcostsrelatedtofuelandCO
2
pricesaresignificantlyreduced.Thiscontinuesarecent
trenddrivenbynearrecord‐lownaturalgaspricesinmanymarkets.EvenwithrisingCO
2
pricesovertime,therapiddecarbonisationofelectricitymeansthatfuelandCO
2
makeupa
declining share oftotal costs, falling from aboutone‐quarter in 2020 to5% in2050. The
balance of fuel costs shifts towards low‐emissions sources, mainly nuclear power and
bioenergy(includingwithCCUS),thoughsomestillremainsrelatedtonaturalgasandcoal
usedinpowerplantsequippedwithCCUS.
Onechallengeinthiscontextiswhattodoaboutthecoal‐firedpowerplantsinoperation.In
2020,over2100gigawatts(GW)ofpowerplantsworldwideusedcoaltoproduceelectricity
andheat,andtheyemittednearly30%ofallenergy‐relatedCO
2
emissions.Optionsinclude
retrofitting coal‐fired power plants with CCUS technologies, co‐firing with biomass or
ammonia;repurposingcoalplantstofocusonprovidingflexibility; and, where feasible,
phasing them out. In the NZE, all unabated coal‐fired power plants are phased out in
advancedeconomiesby2030andinemergingmarketanddevelopingeconomiesby2040.
Asaresult,emissionsfromcoalfiredpowerplantsfallfrom9.8gigatonnes(Gt)in2020to
3.0Gtin2030andtojust0.1Gtby2040(residualemissionsfromcoalwithCCUSplants).
7

Anotherchallengeisrelatedtothescaleofcapacityretirementsenvisagedandassociated
siterehabilitation,startingwithcoal.Thepaceofretirementofcoal‐firedpowerplantsover
2020‐50isnearlytriplethatofthepastdecade.Decommissioningateachsitecanoftenlast
adecadeandentailsignificantcost,andmayinvolveclosingamineaswell.Insomecases,it
maybefinanciallyattractivetobuildarenewableenergyprojectonthesamesite,taking
advantageofthegridconnectionandlimitingthecostofrehabilitation.Thousandsofnatural
gas‐firedandoil‐firedpowerplantsarealsoretiredby2050,thoughthesesitesareoften
strategicallylocatedonthegridandmanyarelikelytobereplaceddirectly with battery
storagesystems.
The large fleet of ageing nuclear reactors in advanced economies means their
decommissioningincreases, despitemany reactor lifetimeextensions. Inthe NZE,annual
averagenuclearretirementsgloballyare60%higheroverthenext30yearsthaninthelast
decade.Eachnucleardecommissioningprojectcanspandecades,withcostsrangingfrom
severalhundredmilliondollarstowelloverUSD1billionforlargereactors(NEA,2016).
4.3.4 Energy‐consumingindustries
Thechangesinthe NZE would haveanenormousimpacton industries thatmanufacture
vehiclesandtheirmaterialandcomponentsuppliers.Around95%ofallthecarsandnearly
all of the trucks sold worldwide in 2020 were conventional vehicles with an internal
combustionengine.IntheNZE,about60%ofglobalcarsalesin2030areEVs,and85%of
 
7
ACO
2
capturerateof90%isassumed,thoughhigherratesaretechnicallypossiblewithreducedefficiencies
andadditionalcosts(IEA,2020g).
IEA. All rights reserved.
166 International Energy Agency | Special Report
heavy‐dutytruckssoldin2040areEVsorfuelcellvehicles.IntheNZE,vehiclecomponent
suppliers and vehicle manufacturers alikeretool factories, change designs to incorporate
batteries and fuel cells, and adjust supply chains to minimise the lifecycle emissions
intensities of vehicles. This provides opportunities to redesign existing parts and
manufacturingprocessestoimproveefficiencyandlowercosts.
TherapidincreaseinEVsalesintheNZErequiresanimmediatescaleupofnewsupplychains
forbatteriesaswellasrechargingandlow‐emissionsrefuellinginfrastructure.IntheNZE,
battery production capacity increases to more than 6.5terawatt‐hours (TWh) by 2030,
comparedwithlessthan0.2TWhin2020.Anydelayinexpandingbatterymanufacturing
capacitywouldhaveadetrimentalimpactontheroll‐outofEVsandslowcostreductionsfor
othercleanenergytechnologiesthatbenefitintheNZEfromhavingsimilarmanufacturing
processesandknow‐how(suchasfuelcellvehiclesandelectrolysers).
Inaviationandshipping,liquidlow‐emissionsfuelsarecentraltocutemissions.Switchingto
someofthesewouldhavelittleimpactonvesseldesign:theuseofhydrogen‐basedfuelsor
biofuels in shipping would only require changes to the motor and fuel system, and bio‐
kerosene or synthetic kerosene canoperatewithexistingaircraft. New bunkering and
refuellinginfrastructureareneededintheNZE,however,andtheuseoftheselow‐emissions
fuels also requires new safety and standardisation standards, protocols for permitting,
construction and design, as well as international regulation, monitoring, reporting and
verificationoftheirproductionanduse.
Inheavyindustrialsectors–steel,cementandchemicals–mostdeepemissionsreduction
technologiesarenotavailableonthemarkettoday.IntheNZE, material producerssoon
demonstratenear‐zeroemissionprocesses,aidedbygovernmentrisk‐sharingmechanisms,
andstarttoadapttheirexistingproductionassets.Formultinationalcompanies,thisincludes
developingtechnologytransferstrategiestorolloutprocessesacrossplants.International
co‐operationwouldhelptoensurealevelplayingfieldforall.Withincountries,effortsfocus
on industrial hubs in order to accelerate emissions reductions across multiple industrial
sectorsbypromotingeconomiesofscalefornewinfrastructure(suchasCO
2
transportand
storage)andsuppliesoflow‐emissionsenergy.
Materials producers work with governments in the NZE to create an international
certificationsystemfornearzeroemissionmaterialstodifferentiate them from
conventionalones.Thiswouldenablebuyersofmaterialssuchasvehiclemanufacturersand
construction companies to enter into commercial agreements to purchase near‐zero
emissionsmaterialsatapricepremium.Inmostcases,thepremiumwouldresultinonlya
modestimpactonthefinalpriceoftheproductpricegiventhatmaterialsgenerallyaccount
forasmallportionofmanufacturingcosts(MaterialEconomics,2019).
Chapter 4 | Wider implications of achieving net-zero emissions 167
4
4.4 Citizens
4.4.1 Energy‐relatedSustainableDevelopmentGoals
Aninclusiveandpeople‐centredtransitioniskeytotheworldmovingrapidly,collectively
andconsistentlytowardnet‐zeroemissionsbymid‐century.TheNZEachievestheUnited
Nationsenergy‐relatedSustainableDevelopmentGoals(SDGs)ofuniversalaccesstoclean
modernenergyby2030(SDG7.1)andreducingprematuredeathscausedbyairpollution
(SDG3.9). The technologies, options and measures used to achievefullaccesstolow
emissions electricity and clean cooking solutions by 2030 in the NZE also help to reduce
greenhousegas(GHG)emissionsfromhouseholdenergyuse.
Energyaccess
About790millionpeopleworldwidedidnothaveaccesstoelectricityin2020,mostofthem
living in sub‐Saharan Africa and developing Asia. Around 2.6billion people did not have
accesstocleancookingoptions:35%ofthemwereinsub‐SaharanAfrica,25%inIndiaand
15%inChina.Alackofaccesstoenergynotonlyimpedeseconomicdevelopment,butalso
causesseriousharmtohealthandisabarriertoprogressongenderequalityandeducation.
8
Figure 4.10
People gaining access to electricity by type of connection in
emerging market and developing economies in the NZE
IEA.Allrightsreserved.
More than 80% of people gaining access to electricity by 2030 are supplied
renewable power and just over half via off-grid systems
 
8
Householdsrelyingonthetraditionaluseofbiomassforcooking dedicate around 1.4hours each day
collectingfirewoodandseveralhourscookingwithinefficientstoves,aburdenlargelybornebywomen(IEA,
2017).
200
400
600
800
1000
2020 2025 2030
Millionpeople
Stand‐alonerenewables
Stand‐alone
Mini‐gridsrenewables
Mini‐grids
Gridrenewables
Grid
Withoutaccess
IEA. All rights reserved.
168 International Energy Agency | Special Report
Around45%ofthosewholackaccesstoelectricityby2030gainitviaaconnectiontoamain
grid,whiletherestareservedbyminigrids(30%)andstandalone solutions (25%)
(Figure4.10).Almostalloffgridorminigridsolutionsare100%renewable.Decentralised
systems that rely on diesel generators, which are also deployed in some grid‐connected
systems to compensate for low reliability, are phased out later and replaced with solar
storage systems. Achieving full access does not lead to a significant increase in global
emissions:in2030itaddslessthan0.2%toCO
2
emissions.Achievingfullaccesstoelectricity
alsobringsefficiencygainsandacceleratestheelectrificationofappliances,whichbecome
criticaltoemissionsreductionsinbuildingsafter2030inemergingmarketanddeveloping
economies.
Forcleancooking,55%ofthosegainingaccessby2030intheNZEdosothroughimproved
biomasscookstoves(ICS)fuelledbymodernbiomass,biogasorethanol,25%throughthe
useofliquefiedpetroleumgas(LPG)and20%viaelectriccookingsolutions(Figure4.11).LPG
isthemainfueladoptedinurbanareasandICSisthemainoptioninruralareas.Theuseof
LPGresultsinaslightincreaseinCO
2
emissionsin2030butanetreductioninoverallGHG
emissions due to reduced methane, nitrous oxides and black carbonemissionsfromthe
traditionaluseofbiomass.Inaddition,LPGisincreasinglydecarbonisedafter2030usingbio‐
sourced butane and propane (bioLPG) produced sustainably from municipal solid waste
(MSW)andotherrenewablefeedstocks.ThetechnicalpotentialofbioLPGproductionfrom
MSWin2050inAfricacouldbeenoughtosatisfythecookingneedsofmorethan750million
people(GLPGP,2020;LiquidGasEurope,2021).
Figure 4.11
Primary cooking fuel by share of population in emerging market
and developing economies in the NZE
IEA.Allrightsreserved.
Traditional biomass is entirely replaced with modern energy by 2030, mainly in the form of
bioenergy and LPG; by 2050, electricity, bioenergy and bioLPG meet most cooking needs
Notes:Modernbioenergyincludesimprovedcookstoves,biogasandethanol.Liquefiedpetroleumgas(LPG)
includesfossilandrenewablefuel.
20%
40%
60%
80%
100%
2020 2025 2030 2035 2040 2050
Otherpolluting
Traditionalbiomass
Modernbioenergy
Naturalgas
LPG
Electricity
WithAccess
WithoutAccess
Chapter 4 | Wider implications of achieving net-zero emissions 169
4
The achievement of universal access to clean energy by 2030 requires governments and
donorstoputexpandingaccessattheheartofrecoveryplansandprogrammes.Therewould
be multiple benefits: investing heavily in energy access would provide an immediate
economicboost,createlocaljobsandbringdurableimprovementstosocialwell‐beingby
modernisinghealthservicesandfoodchains.IntheNZE,aroundUSD35billionisspenteach
yearimprovingaccesstoelectricityandalmostUSD7billioneach year on clean cooking
solutionsforpeopleinlow‐incomecountriesfromnowto2030.
Airpollutionandhealth
Morethan90%ofpeoplearoundtheworldareexposedtopollutedairtoday.Suchpollution
ledtoaround5.4millionprematuredeathsin2020,underminingeconomicproductivityand
placingextrastressonhealthcaresystems.Mostofthesedeathswereinemergingmarket
anddevelopingeconomies.Justoverhalfwerecausedbyexposuretooutdoorairpollution;
theremainderresultedfrombreathingpollutedairindoors,causedmainlybythetraditional
useofbiomassforcookingandheating.
Energy‐relatedemissionsofthethreemajorairpollutants–sulphurdioxide(SO
2
),nitrogen
oxides(NO
X
)andfineparticulatematter(PM
2.5
)–fallrapidlyintheNZE.SO
2
emissionsfallby
85%between2020and2050,mainlyasaresultofthelarge‐scalephase‐outofcoal‐fired
powerplantsandindustrialfacilities.NO
X
emissionsalsodropbyaround85%asaresultof
the increased use of electricity, hydrogen and ammonia in the transport sector. The
increaseduptakeofcleancookingfuelsindevelopingcountries,togetherwithairpollution
control measures in industry and transport, results in a 90% drop in PM
2.5
emissions
(Figure4.12).ThereductioninairpollutionintheNZEleadstoroughlyahalvinginpremature
deaths in 2050 compared with 2020, saving the lives of about 2million people per year,
around85%oftheminemergingmarketanddevelopingeconomies.
Figure 4.12
Global premature deaths and air pollutant emissions in the NZE
IEA.Allrightsreserved.
Reductions in major air pollutants mean 2 million fewer premature deaths per year
Sources:IEAanalysisbasedonIIASA.
1
2
3
4
5
2020 2050
Millionpeople
Advancedeconomies
Emergingmarketanddevelopingeconomies
Prematuredeaths
PM
2.5
SO
2
NO
x
20
40
60
80
100
2020 2030 2040 2050
Index(2020=100)
Changeinairpollutant emissions
IEA. All rights reserved.
170 International Energy Agency | Special Report
4.4.2 Affordability
Totalspendingonenergy
Energyaffordabilityisakeyconcernforgovernments,businessesandhouseholds.Global
direct spending on energy, i.e. the total fuel bills paid by all end users, which totalled
USD6.3trillionin2020,increasesby45%to2030and75%to2050,inlargepartreflecting
populationandGDPgrowthoverthisperiod.AsashareofglobalGDP,thefigureslookrather
different:totaldirectspendingonenergyholdssteadyataround8%outto2030(similarto
theaverageoverthelastfiveyears),butthendeclinesto6%in2050.Thisdeclineoffsetsa
significant share of the higher cost of buying new, more efficient energy‐consuming
equipment.
AportionoftheincreaseinenergyspendingintheNZEisrelatedtorisingCO
2
pricesandthe
removal of consumption subsidies for fossil fuels and electricity. CO
2
pricing(taxesand
tradingschemes)paidbyendusersatitspeakgeneratesglobalrevenuesintheNZEofclose
to USD700billion each year between 2030 and 2035, before declining steadily due to
decliningoverallemissions:theserevenuescouldberecycledintoeconomiesorotherwise
usedtoimproveconsumerwelfare,particularlyforlow‐incomehouseholds.TheNZEalso
sees the progressive removal of consumption subsidies for fossil fuels, many of which
disproportionally benefit wealthier segments of the population thatusemoreofthe
subsidised fuel. Phasing out the subsidies would provide more efficient price signals for
consumers,andspurmoreenergyconservationandmeasurestoimproveenergyefficiency.
Theimpactofphasingoutsubsidiesonlowerincomehouseholdscouldbeoffsetthrough
directpaymentschemesorothermeansatloweroverallcoststotheeconomy.
Figure 4.13
Global energy spending by fuel in the NZE
IEA.Allrightsreserved.
Total energy spending increases by 75% to 2050, mainly on electricity
Note:Other=hydrogen‐basedandsyntheticfuels,anddistrictheating.
20%
40%
60%
80%
100%
2010 2020 2030 2040 2050
Oilproducts Naturalgas Coal Electricity Bioenergy Other
2
4
6
8
10
2010 2020 2030 2040 2050
TrillionUSD(2019)
Chapter 4 | Wider implications of achieving net-zero emissions 171
4
The transformation of the global energy system in the NZE drives a major shift in the
compositionofenergyspending.SpendingonelectricityatUSD2.7trillionin2020(45%of
totalenergyspending)exceededspendingonoilproductsforthefirsttimeanditrisesto
overUSD8.5trillionin2050(80%oftotalenergyspending)(Figure4.13).Retailelectricity
pricesincreaseby50%onaverage,contributingtothetotalincrease.Spendingonoil,which
has dominated overall energy spending for decades, goes into long‐term decline in the
2020s,itsshareofspendingfallingfrom40%in2020tojust5%in2050.Spendingonnatural
gasandcoalalsodeclinesinthelongterm,offsetbyhigherspendingonlow‐emissionsfuels.
SpendingonbioenergyreachesaboutUSD900billionperyearby2040,whileotherlow‐
emissionsfuels,includinghydrogen‐basedproducts,gainafootholdandestablishamarket
worthofaroundUSD600billionperyearby2050.
Householdspendingonenergy
Directspendingbyhouseholdsonenergy,includingforheating,cooling,electricityandfuel
forpassengercars,fallsasashareofdisposableincomeintheNZE,thoughtherearelarge
differencesbetweencountries(Figure4.14).
Figure 4.14
Average annual household energy bill in the NZE
IEA.Allrightsreserved.
The proportion of disposable household income spent on energy is stable in emerging
market and developing economies, and drops substantially in advanced economies
Note:Hydrogen‐basedincludeshydrogen,ammoniaandsyntheticfuels.
Inadvancedeconomies,theaverageannualbilldeclinesfromaboutUSD2800in2020to
USD2300 in 2030, thanks to a strong push on energy efficiencyandcosteffective
electrification.Oilproductsmakeupclosetohalfofhouseholdenergybillsin2020,butthis
fallsto30%in2030andalmostzeroin2050,duetoarapidshifttoEVsandtodownward
pressureonoilprices.Naturalgasbills,whichmakeupalmost10%ofthetotaltoday,also
1%
2%
3%
4%
5%
6%
500
1000
1500
2000
2500
3000
2020 2030 2050 2020 2030 2050
USD(2019)
Hydrogen‐based
Districtheating
Bioenergy
Electricity
Coal
Naturalgas
Oilproducts
Shareofincome
Advancedeconomies Emergingmarketand
developingeconomies
(rightaxis)
IEA. All rights reserved.
172 International Energy Agency | Special Report
falltoalmostzeroin2050withtheelectrificationofheatingandcooking.Electricityrises
fromabout35%ofhouseholdfuelbillsin2020to90%in2050,increasingthesensitivityof
householdstoelectricitypricesandconsumption.Increasingincomesmeanthathousehold
spendingonenergyasashareofdisposableincomedropsfrom4%in2020to2%in2050.
In emerging market and developing economies, there is a huge increase in demand for
modernenergyserviceslinkedtoexpandingpopulations,economicgrowth,risingincomes
anduniversal accessto electricity andclean cookingoptions. Asin advanced economies,
electricityaccountsforthevastmajorityofenergybillsin2050.Theuseofmoreefficient
appliancesandequipmentcurbssomeoftheincreaseindemand,buthouseholdbillsstill
increaseintheNZEbyover60%to2030andmorethandoubleby2050.Asapercentageof
disposable income, however, bills in emerging market and developingeconomies remain
around4%,andtherearelargesocialandeconomicbenefitsfromincreasedenergyuse.
Figure 4.15
Change in household spending on energy plus energy-related
investment in the NZE relative to 2020
IEA.Allrightsreserved.
Total household spending on energy increases modestly in emerging market and
developing economies, leaving over 90% of additional income available for other uses
Taking into account additional investment in electricity‐consuming equipment such as
efficient appliances and electric vehicles, spending on energy plus related investment is
USD1.30higherperdayperhouseholdgloballyin2050thanin2020intheNZE.Thismodest
increasemeansthatexpenditureonenergymakesupasmallershareofdisposableincome
in2050thanitdoestoday,thoughtheimpacts varybycountry.Inadvancedeconomies,
additionalinvestmentinelectrification,energyefficiencyandrenewableenergycostsabout
USD750perhouseholdby2030andUSD720in2050,whichisfullyoffsetbyreductionsin
the level of energy bills (Figure4.15). In emerging market and developing economies, a
‐2%
‐1%
0%
1%
2%
‐1000
‐500
0
500
1000
2030 2050 2030 2050
USD(2019)
Other
Renewables
Energyefficiency
Electrification
Energybillper
Netchange
Netchangeshareof
Investmentrecovery
Variablecosts
disposableincome
(rightaxis)
household
Emergingmarketand
developingeconomies
Advanced
economies
Chapter 4 | Wider implications of achieving net-zero emissions 173
4
growingbasketofenergyservicesmeansincreaseduseofenergy,andtotalenergy‐related
householdspendingincreases.Additionalinvestmentmoderatesthechangeinenergybills,
withtheresultthattotalenergyrelatedspendingtakes2percentagepointsmoreof
householddisposableincomein2030and1percentagepointmorein2050thantoday.
4.4.3 Behaviouralchanges
Behaviouralchangesplayanimportantpartinreducingenergydemandandemissionsinthe
NZE,especiallyinsectorswheretechnicaloptionsforcuttingemissionsarelimitedin2050.
While it is citizens and companies that modify their behaviour,thechangesaremostly
enabledbythepoliciesandinvestmentsmadebygovernments,andinsomeinstances,they
arerequiredbylawsorregulations.TheCovid‐19pandemichasincreasedgeneralawareness
ofthepotentialeffectivenessofbehaviouralchanges,suchasmask‐wearing,andworking
andschoolingathome.Thecrisisdemonstratedthatpeoplecanmakebehaviouralchanges
atsignificantspeedandscaleiftheyunderstandthechangestobejustified,andthatitis
necessaryforgovernmentstoexplainconvincinglyandtoprovideclearguidanceaboutwhat
changesareneededandwhytheyareneeded.
Figure 4.16
Emissions reductions from policy-driven and discretionary
behavioural changes by citizens and companies in the NZE
IEA.Allrightsreserved.
Three-quarters of the emissions saved by behavioural changes could be
directly influenced or mandated by government policies
Aroundthree‐quartersoftheemissionssavedbybehaviouralchangesbetween2020and
2050 in the NZE could be directly influenced or mandated by government policy
(Figure4.16).Theyincludemitigationmeasuressuchasphasingoutpollutingcarsfromlarge
cities and reducing speed limits on motorways. The other one‐quarter involves more
discretionary behavioural changes, such as reducing wasteful energy use in homes and
‐1500
‐1000
‐500
2030 2040 2050 2030 2040 2050
MtCO₂
Influencedormandatedbypolicies Discretionarybehaviouralchanges
Citizens Companies
IEA. All rights reserved.
174 International Energy Agency | Special Report
offices, though even these types of changes could be promoted through awareness
campaigns and other means. Around 10% of emissions savings directly influenced or
mandated by government policy would require new or redirected investment in
infrastructure.Forexample,theshiftintheNZEfromregionalflightstohigh‐speedrailwould
necessitatebuildingaround170000kilometresofnewtrackgloballyby2050(atriplingof
2020levels).
Behaviouralchangesmadebycitizensandcompaniesplayaroughlyequalroleinreducing
emissionsintheNZE.Mostchangesinroadtransportandenergysavinginhomeswould
dependonindividuals,whereastheprivatesectorhastheprimaryroleinreducingenergy
demand in commercial buildings and pursuing materials efficiency in manufacturing.
Companiescanalsoinfluencebehaviouralchangesindirectly,forexample,bypromotingthe
useofpublictransport by employees thatcommuteorencouraging workingfromhome.
However, a simple distinction between the role for individuals and companies masks a
complexunderlyingdynamic:itisultimatelycitizensasconsumersofenergy‐relatedgoods
andserviceswhoshapecorporatestrategies,butatthesametimecompaniesdomuchto
influenceandgenerateconsumerdemandthroughmarketingandadvertising.IntheNZE,
consumers and companies move together in adopting behavioural changes, with
governmentssettingthedirectionofthosechangesandfacilitatingthemviaeffectiveand
sustainedpolicysupport.
ThebehaviouralchangesintheNZEhappentodifferentextentsindifferent regions, and
reflectarangeofgeographicalandinfrastructureconstraints,aswellasexistingbehavioural
norms and cultural preferences. In countries with low rates of car ownership or energy
servicedemandinbuildings,manyofthebehaviouralchangesinadvancedeconomiesinNZE
wouldnotberelevantorappropriate.Asaresult,aroundhalfoftheemissionssavingsfrom
behaviouralchangesareinemergingmarketanddevelopingeconomies,despitearound95%
ofactivitygrowthinbuildingsandroadtransportbetween2020and2050occurringthere.
Nevertheless, there are significant opportunities in emerging market and developing
economies for materials efficiency and urban design to decouplegrowthineconomic
prosperityandenergyservicesfromincreasesinemissions.Forexample,around85%ofCO
2
emissionsreductionsfromcementandsteelmakingin2050areduetogainsinmaterials
efficiencyinemergingmarketanddevelopingeconomies.
Citiesareimportantto thebehaviouralchangesintheNZE.Urbandesigncanreducethe
averagecitydwellerscarbonfootprintbyupto60%byshaping lifestyle choices and
influencingday‐to‐daybehaviour.Forexample,compactcitieswithclusteredamenitiescan
shortenaveragetriplengths;digitalisationcanhelpsharedprivatemobilitytobecomethe
defactooptiontoaccommodatemuchofthegrowthinservicedemand;andurbangreen
infrastructurecanreducecoolingdemand(Feyisa,Dons&Meilby,2014).
Chapter 4 | Wider implications of achieving net-zero emissions 175
4
4.5 Governments
4.5.1 Energysecurity
Energysecurityisanimportantconsiderationforgovernmentsandthosetheyserve,andthe
pathwaytonet‐zeroemissionsmusttakeaccountofit.Concernsaboutenergysecurityhave
traditionally been associated with oil and natural gas supplies. The drop in oil and gas
demandandtheincreaseddiversityoftheenergysourcesusedintheNZEmayreducesome
risks,buttheydonotdisappear.Therearealsonewpotentialvulnerabilitiesassociatedwith
theneedtomaintainreliable,flexibleandsecureelectricitysystems,andwiththeincrease
in demand for raw minerals for clean energy technologies. Improving energy efficiency
remainsthecentralmeasureforincreasingenergysecurity–evenwithrapidgrowthinlow‐
emissionselectricitygeneration,thesafestenergysuppliesarethosethatarenotneeded.
Oilandgassecurity
NonewoilandnaturalgasfieldsarerequiredintheNZEbeyondthosealreadyapprovedfor
development,andsuppliesbecomeincreasinglyconcentratedinasmallnumberoflow‐cost
producers.Foroil,OPEC’sshareofglobaloilsupplygrowsfromaround37%inrecentyears
to52%in2050,alevelhigherthanatanypointinthehistoryofoilmarkets(Figure4.17).For
naturalgas,inter‐regionalliquefiednaturalgas(LNG)tradeincreasesfrom420bcmin2020
overthenextfiveyearsbutitthenfallstoaround160bcmin2050.Nearlyallexportsin2050
comefromthelowestcostandlowestemissionsproducers.Thismeansthattheimportance
ofensuringadequatesuppliesofoilandnaturalgastothesmoothfunctioningoftheglobal
energysystemwouldbequantitativelylowerin2050thantoday,butitdoesnotsuggestthat
theriskofashortfallinsupplyorsuddenpriceriseisnecessarilygoingtodiminish,anda
shortfallorsuddenpricerisewouldstillhavelargerepercussionsforanumberofsectors.
Figure 4.17
Global oil supply and LNG exports by region in the NZE
IEA.Allrightsreserved.
Increased reliance on OPEC and other producer economies suffering from falling
oil and gas revenues could pose a risk to supply security in consuming countries
10%
20%
30%
40%
50%
20
40
60
80
100
1971 2010 2050
ShareofOPEC(rightaxis)
Oil (mb/d)
OPEC
Non‐OPEC
100
200
300
400
500
1971 1990 2010 2030 2050
NorthAmerica Russia Australia
SoutheastAsia MiddleEast Africa
Other
LNGexports(bcm)
IEA. All rights reserved.
176 International Energy Agency | Special Report
Evenifthetimingandambitionofemissionreductionpoliciesareclear,thechangesinthe
NZEclearlyhaveimplicationsforproducersandconsumersalike.Manyproducereconomies
wouldseeoilandgasrevenuesdroptosomeofthelowesteverlevels(seesection4.2.2).
Even if these producers increasetheirmarketshare,anddiversify their economies and
sourcesoftaxrevenue,theyarelikelytostruggletofinanceessentialspendingatcurrent
levels.Thiscouldhaveknock‐oneffectsforsocialstability,andthatinturncouldpotentially
threatenthesmoothdeliveryofoilandgastoconsumingcountries.Movesonthepartof
producereconomiestogainmarketshareorafailuretomaintainupstreamoperationswhile
managingtheextremestrainsthatwouldbeplacedontheirfiscalbalancescouldleadto
turbulentandvolatilemarkets,greatlycomplicatingthetaskfacingpolicymakers.
Electricitysecurity
TherapidelectrificationofallsectorsintheNZE,andtheassociatedincreaseinelectricity’s
shareoftotalfinalconsumptionfrom20%in2020tonearly50%in2050,putselectricity
evenmoreattheheartofenergysecurityacrosstheworldthanitalreadyis(IEA,2020h).
Greaterrelianceonelectricityhasbothpositiveandnegativeimplicationsforoverallenergy
security. One advantage for energy‐importing countries is that they become more
self‐sufficient,sinceamuchhighershareofelectricitysupplyisbasedondomesticsources
intheNZEthanisthecaseforotherfuels.Howevertheincreasedimportanceofelectricity
meansthatanyelectricitysystem disruption would have larger impacts. Electricity
infrastructureisoftenmorevulnerabletophysicalshockssuchasextremeweatherevents
than pipelines and underground storage facilities, and climate change is likely to put
increasingpressureonelectricitysystems,forexamplethroughmorefrequentdroughtsthat
mightdecreasetheavailabilityofwaterforhydropowerandforcoolingatthermalpower
plants.Theresilienceofelectricitysystemsneedstobeenhancedtomitigatetheserisksand
maintainelectricitysecurity,includingthroughmorerobustcontingency planning, with
solutionsbasedondigitaltechnologiesandphysicalsystemhardening(IEA,2021b).
Cybersecuritycouldposeanevengreaterrisktoelectricitysecurityassystemsincorporate
moredigitalisedmonitoringandcontrolsinagrowingnumberofpowerplants,electricity
networkassetsandstoragefacilities.Policymakershaveacentralparttoplayinensuring
thatthecyberresilienceofelectricityisenhanced,andthereareanumberofwaysinwhich
theycanpursuethis(IEA,2021c).
Maintaining electricity security also requires a range of measures to ensure flexibility,
adequacyandreliabilityatall times.Enhancedelectricitysystemflexibilityisofparticular
importance as the share of variable renewables in the generation mix rises. As a
consequence,electricitysystemflexibilityquadruplesgloballyintheNZEinparallelwitha
morethantwo‐and‐ahalf‐foldincreaseinelectricitysupply.
9
Aportfolioofflexibilitysources
– including power plants, energy storage and demand response supported by electricity
 
9
Electricitysystemflexibilityisquantifiedherebasedonhourtohourrampingneeds,whichisonlyoneaspect
offlexibilitythatalsoincludesactionsonmuchshortertimescalestomaintainfrequencyandotherancillary
services.
Chapter 4 | Wider implications of achieving net-zero emissions 177
4
networks – is used to match supply and demand at all times of theyear,undervarying
weatherconditionsandlevelsofdemand.ThereisasignificantshiftintheNZEfromusing
coal‐ and gas‐fired power plants for the provision of flexibility to the use of renewables,
hydrogen,batterystorage,anddemand‐sideresponse(Figure4.18).
Figure 4.18
Electricity system flexibility by source in the NZE
IEA.Allrightsreserved.
To meet four-times the amount of hour-to-hour flexibility needs,
batteries and demand response step up to become the primary sources of flexibility
Electricity demand also becomes much more flexible as a result oftheuseofdemand
responsemeasures,e.g.toshiftconsumptiontotimeswhenrenewableenergyisplentiful.
Conventional sources of demand response such as moderating industry activities remain
important,butnewareasofdemandresponsesuchassmartchargingofEVsunlockvaluable
new ways of supplementing them.
10
As the EV fleet expands in the NZE, EVs provide a
significant portion of total electricity system flexibility. Althoughthetechnologyalready
exists,therolloutofsmartcharginghasbeenslowtodateduetoinstitutionalandregulatory
barriers;thesehurdlesareovercomeintheNZE.Measuresarealsoimplementedtoensure
that the digitalisation of charging and other sources of flexibility does not compromise
cybersecurity,andthatpotentialsocialacceptanceissuesareaddressed.
Energystoragealsoplaysanimportantroleintheprovisionof flexibility in the NZE. The
deploymentofbatterystoragesystemsisalreadystartingtoaccelerateandtocontributeto
themanagementofshort‐durationflexibilityneeds,butthemassivescaleupto3100GWof
storagein2050(withfourhourdurationonaverage)envisagedintheNZEhingeson
overcomingcurrentregulatoryandmarketdesignbarriers.Pumpedhydropoweroffersan
attractivemeansofprovidingflexibilityoveramatterofhoursanddays,whilehydrogenhas
 
10
Smartchargerssharereal‐time data with a centralised platform to allow system operators to optimise
chargingprofilesbasedonhowmuchenergythevehicleneedsoveraspecifiedspanoftime,howmuchis
available,thepriceofwholesaleelectricity,gridcongestionandotherparameters.
20% 40% 60% 80% 100%
2050
2020
2050
2020
Coal
Naturalgas
Oil
Hydrogen‐based
Nuclear
Hydro
Otherrenewables
Batteries
Demandresponse
Advanced
economies
Emerging marketand
developingeconomies
IEA. All rights reserved.
178 International Energy Agency | Special Report
thepotentialtoplayanimportantpartinlongertermseasonalstoragesinceitcanbestored
inconvertedgasstoragefacilitiesthathaveseveralordersofmagnitudemorecapacitythan
batterystorageprojects.
Dispatchablepowerisessentialtothesecuretransitionofelectricitysystems,andintheNZE
thiscomesincreasinglyfromlow‐emissionssources.Hydropowerprovidesasignificantpart
of flexibility in many electricity systems today, and this continues in the future, with
particularemphasisonexpandingpumpedhydrofacilities.Nuclearpowerandgeothermal
plants,thoughdesignedforbaseloadgeneration,alsoprovideadegreeofflexibilityinthe
NZE,butthereareconstraintsonhowmuchthesesourcescanbeexpanded.Thisleavesan
importantroleforthermalpowerplantsthatareequippedwithcarboncaptureoruselow‐
emissionsfuels.Forexample,theuseofsustainablebiomassorlow‐emissionsammoniain
existing coal plants offers a way of allowing these facilities to continue to contribute to
flexibilityandcapacityadequacy,whileatthesametimereducingCO
2
emissions.Additional
measureswillalsobenecessarytomaintainpowersystemstability(Box4.1).
Box 4.1
Power system stability with high shares of variable renewables
Stabilityisakeyfeatureofelectricitysecurity,allowingsystemstoremaininbalanceand
withstand disturbances such as sudden generator or grid outages. Historically,
conventional generators such as nuclear, hydro and fossil fuels have been central to
electricity system stability, providing inertia with rotating machines that allow stored
kineticenergytobeinstantlyconvertedintopowerincaseofasystemdisturbance,and
generatingavoltagesignalthathelpsallgeneratorsremainsynchronous.
Incontrast,newertechnologiessuchassolarPV,windandbatteriesareconnectedtothe
systemthroughconverters.Theygenerallydonotcontributetosysteminertiaandare
configured as “grid‐following” units, synchronising to conventional generators.
Maintainingsystemstabilitywillcallfornewapproachesastheshareofconverterbased
resources,andinparticularvariablerenewables,risesmuchhigherinelectricitysystems.
Thereisagrowingbodyofknowledgeandstudiesonstabilityinsystemswithhighshares
of variable renewables. For example, a recent joint study by the IEA and RTE, the
transmissionsystemoperatorinFrance,analysestheconditionsunderwhichitwouldbe
technicallyfeasibletointegratehighsharesofvariablerenewablesinFrance(IEA,2021d).
Basedonthefindingsofthisstudy:
Oneoptiontoensurestabilityforanetzeropowersystemistomaintainaminimum
amountofconventionalgenerationfromlow‐carbontechnologiesduringhoursof
highsharesVREoutput.Thisapproachtomaintainstabilitycomesatthecostofsolar
andwindcurtailmentathighshares.
Updatedgridcodescanbeusedtocallforvariablerenewablesand batteries to
provide fast frequency response services, which can help reducetheamountof
conventionalgenerationneededforstability.
Chapter 4 | Wider implications of achieving net-zero emissions 179
4
Synchronouscondensersareabletoprovideinertiawithoutgeneratingelectricity.
The technology is already proven at GW‐scale in Denmark and also in South
Australia,butexperienceneedstobeexpandedatlargerscale.
Grid‐formingconverterscanallowvariablerenewablesandbatteriestogeneratea
voltagesignal,thoughexperiencewiththisapproachneedstomovebeyondmicro‐
gridsandsmallislandstolargeinterconnectedsystems.
Demonstrationprojects,stakeholderconsultationsandinternationalcollaborationwill
becriticaltofullyunderstandthemeritsofeachofthesefourapproachesandthescope
foraportfolioofoptionsthatwould most cost‐effectively achievenetzeroemissions
whilemaintainingelectricitysecurity.
Electricitynetworkssupportandenabletheuseofallsourcesofflexibility,balancingdemand
andsupplyoverlargeareas.Timelyinvestmentingridstominimisecongestionandexpand
thesizeoftheareaswheresupplyanddemandarebalancedwillbecriticaltomakingthe
best use of solar PV and wind projects, and ensuring affordable and reliable supplies of
electricity.Expandinglong‐distancetransmissionalsomakesakeycontributionintheNZE,
sincealackofavailablelandneardemandcentresandotherfactorsmeannewsourcesof
generationareoftenlocatedinremoteareas.Itisimportantthatnewtransmissionsystems
are built with variable, bidirectional operation in mind in ordertomaximisetheuseof
availableflexibilitysources,andthatregulatoryandmarketarrangementssupportflexible
connections between systems. The key value of interconnections comes from
complementary electricity demand andwindpatterns:solarPVoutput is more highly
correlatedthanwindoverlargeareas.
TheNZEseesamajorincreaseindemandforcriticalmineralssuchascopper,lithium,nickel,
cobaltandrareearthelementsthatareessentialformanycleanenergytechnologies.There
areseveralpotentialvulnerabilitiesthatcouldhindertheadequatesupplyoftheseminerals
andleadtopricevolatility(IEA,2021a).Todaysproductionandprocessingoperationsfor
many minerals are highly concentrated in a small number of countries, making supplies
vulnerabletopoliticalinstability,geopoliticalrisksandpossibleexportrestrictions.Inmany
cases,therearealsoconcernsabout land‐use changes, competition for scarce water
resources,corruptionandmisuseofgovernmentresources,fatalitiesandinjuriestoworkers,
andhumanrightsabuses,includingtheuseofchildlabour.Newcriticalmineralprojectscan
havelongleadtimes,sotherapidincreaseindemandintheNZEcouldleadtoamismatch
intimingbetweensupplyanddemand.Theinternationaltradeandinvestmentregimeiskey
tomaintainingreliablemineralsupplies,butpolicysupportandinternationalco‐ordination
willbeneededtoensuretheapplicationofrigorousenvironmentalandsocialregulations.
IEA. All rights reserved.
180 International Energy Agency | Special Report
4.5.2 Infrastructure
Gettingtonet‐zeroemissionswillrequirehugeamountsofnewinfrastructureandlotsof
modifications to existing assets. Energy infrastructure is transformedintheNZEasall
countries and regions move from systems supporting the use of fossil fuels and the
distributionofconventionallygeneratedelectricitytosystemsbasedlargelyonrenewable
electricityandlow‐emissionsfuels.Inmanyemergingmarketanddevelopingeconomies,the
provisionoflargeamountsofinfrastructurewouldbenecessaryinthecomingdecadesin
anycase,creatingawindowofopportunitytosupportthetransitiontoanet‐zeroemissions
economy.Inall countries, governmentswill play a centralrole in planning, financingand
regulatingthedevelopmentofinfrastructure.Someofthemaininfrastructurecomponents
electricitynetworksandEVcharging,pipelinessystemsforlow‐emissionsfuelsandCO
2
,
andtransportinfrastructure–arediscussedbelow.
TherapidincreaseinelectricitydemandintheNZEandthetransitiontorenewableenergy
callforanexpansionandmodernisationofelectricitynetworks (Figure4.19). This would
requireasharpreversalintherecenttrendofdeclininginvestment:failuretoachievethis
wouldalmostcertainlymaketheenergytransitionfornet‐zeroemissionsimpossible.Tariff
designandpermittingproceduresalsoneedtoberevisedtoreflectfundamentalchangesin
theprovisionandusesofelectricity.Someofthemainconsiderationsinclude:
Long‐distancetransmission.MostofthegrowthinrenewablesintheNZEcomesfrom
centralisedsources.Yetthebestsolarandwindresourcesareofteninremoteregions,
requiringnewtransmissionconnections.Ultrahigh‐voltagedirectcurrentsystemsare
likelytoplayanimportantroleinsupportingtransmissionoverlongdistances.
Localdistribution.Energyefficiencygainsinhouseholdsandwideruseofrooftopsolar
PVmeansurpluselectricitywillbeavailablemoreoften,whileelectricheatpumpsand
residential EV charging points will require electricity to be more widely available.
Togetherthesedevelopmentspointtotheneedforsubstantialincreasesindistribution
networkcapacity.
Grid substations. The massive expansion of solar PV and wind requires new grid
substations: their capacity expands by more than 57000GW in the NZE by 2030,
doublingcurrentcapacityglobally.
EVcharging.MajornewpublicchargingnetworksarebuiltintheNZE,includinginwork
places,highwayservicestationsandresidentialcomplexes,tosupportEVexpansionand
long‐distancedrivingonhighways.
Digitalisationofnetworks.Withalargeincreaseintheuseofconnecteddevices,the
digitalisationofgridassetssupportsmoreflexiblegridoperations,bettermanagement
ofvariablerenewablesandmoreefficientdemandresponse.
Chapter 4 | Wider implications of achieving net-zero emissions 181
4
Figure 4.19 Annual average electricity grid expansion, replacement and
substation capacity growth in the NZE
IEA.Allrightsreserved.
Grid and substation expansion is driven largely by the massive deployment of renewables
and electrification of end-uses, with a rising digital share of infrastructure
Note:Substationcapacityhereassumesactiveelectricityisequaltoapparentelectricity.
Pipelinescontinuetoplayakeyroleinthetransmissionanddistributionofenergyinthe
NZE:
Giventherapiddeclineoffossilfuels,significantinvestmentinnewoilandgaspipelines
arenotneededintheNZE.Howeverinvestmentisneededtolinktheproductionoflow
emissionsliquidsandgaseswithconsumptioncentres,andtoconvertexistingpipelines
andassociateddistributioninfrastructurefortheuseoftheselow‐emissionsfuels.Some
low‐emissionsfuels,suchasbiomethaneandsynthetichydrogen‐basedfuels,canmake
useofexistinginfrastructurewithoutanymodifications,butpurehydrogenrequiresa
retrofitofexistingpipelines.Newdedicatedhydrogeninfrastructureisalsoneededin
the NZE, for example to move hydrogenproducedinremoteareaswith excellent
renewableresourcestodemandcentres.
The expansionofCCUS in theNZErequiresinvestment in CO
2
transportand storage
capacity. By 2050, 7.6Gt of CO
2
is captured worldwide, requiring a large amount of
pipeline and shipping infrastructure linking the facilities where CO
2
is captured with
storage sites. Industrial clusters, including ports, may offer the best near‐term
opportunities to build CO
2
pipeline and hydrogen infrastructure, as the various
industries in those clusters using the new infrastructure wouldbeabletosharethe
upfrontinvestmentneeds(Figure4.20).
20%
40%
60%
2
4
6
2016‐
20
2021‐
30
2031‐
40
2041‐
50
Millionkm
Refurbishments Renewablesanddemandincrease Shareofdigitalisation(rightaxis)
Gridexpansionandreplacements
4
8
12
2016‐
20
2021‐
30
2031‐
40
2041‐
50
ThousandGW
Gridsubstationcapacitygrowth
IEA. All rights reserved.
182 International Energy Agency | Special Report
Figure 4.20 Illustrative example of a shared CO
2
pipeline in an
industrial cluster
IEA.Allrightsreserved.
Deployment of technologies like CCUS and hydrogen and their enabling infrastructure
would benefit strongly from a cross-sectoral approach in industrial clusters
Transformingtransportinfrastructurerepresentsbothachallengeandanopportunity.The
challengearisesfromthepotentialincreaseintheenergyandcarbonintensityofeconomic
growthduringtheinfrastructuredevelopmentphase.
11
Steelandcementarethetwomain
componentsofvirtuallyallinfrastructureprojects,buttheyare also among the most
challenging sectors to decarbonise. The opportunity comes from the scope that exists in
somecountriestodevelopinfrastructurefromscratchinawaythatiscompatiblewiththe
net zero goal. Countries undergoing rapid urbanisation today can design and steer new
infrastructuredevelopmenttowardshigherurbandensityandhigh‐capacitymasstransitin
tandemwithEVchargingandlow‐emissionsfuellingsystems.
Railhasanimportant part to play astransportinfrastructure is developed.TheNZEsees
large‐scaleinvestmentinallregionsinhigh‐speedtrainstoreplacebothlong‐distancecar
driving and short‐haul aviation.Italsoseeslargescaleinvestment in all regions in track,
controlsystems,rollingstockmodernisationandcombinedfreightfacilitiestoimprovespeed
andflexibilityforjust‐in‐timelogisticaloperationsandthussupportashiftoffreightfrom
roadtorail,especiallyforcontainertraffic.
 
11
ThemodellingfortheNZEincorporatestheincreaseinsteelandcementthatisrequiredtobuildadditional
transport infrastructure (roads, cars and trucks) and energy infrastructure, e.g. power plants and wind
turbines.
Chapter 4 | Wider implications of achieving net-zero emissions 183
4
4.5.3 Taxrevenuesfromretailenergysales
Theslumpinthe consumptionoffossilfuelsrequiredtogetto net‐zeroemissionswould
resultinthelossofalargeamountoftaxrevenueinmanycountries,giventhatfuelssuchas
oil‐basedtransportfuelsandnaturalgasareoftensubjectto highexciseorotherspecial
taxes.Inrecentyears,energy‐relatedtaxesaccountedforaround4%oftotalgovernment
tax revenues in advanced economies on average and 3.5% in emerging market and
developingeconomies,buttheyprovidedasmuchas10%insomecountries(OECD,2020).
Figure 4.21
Global revenues from taxes on retail sales of oil and gas in the
NZE
IEA.Allrightsreserved.
Tax revenues slump from retail sales of oil and gas
Taxrevenuefromoilandnaturalgasretailsalesfallsbycloseto90%between2020and2050
intheNZE(Figure4.21).Governmentsarelikelytoneedtorely on some combination of
othertaxrevenuesandpublicspendingreformstocompensate.Sometaxationmeasures
focusedontheenergysectorcouldbeuseful.However,anysuchtaxeswouldneedtobe
carefully designed to minimise their impact on low‐income households, as poorer
householdsspendahigherpercentageoftheirdisposableincomeonelectricityandheating.
Optionsforenergy‐relatedtaxesinclude:
CO
2
prices.TheseareintroducedinallregionsintheNZE,albeitatdifferentlevelsfor
countriesandsectors,whichprovideadditionalrevenuestreams.Thereductioninoil
andnaturalgasexcisetaxesismorethancompensatedoverthenext15yearsbyhigher
revenuesfromCO
2
pricesrelatedtothesefuelspaidbyendusersandothersectors,but
thesetoofallastheglobalenergysystemmovestowardsnet‐zeroemissions.
Roadfeesandcongestioncharges.Thesewouldhavetheaddedbenefitofdiscouraging
drivingandencouragingswitchingtootherlesscarbon‐intensivemodesoftransport.
200
400
600
800
1000
2010 2020 2030 2040 2050
BillionUSD(2019)
Oilexcisetax
Naturalgasexcisetax
IEA. All rights reserved.
184 International Energy Agency | Special Report
Increasing taxation onelectricity.Highertaxesonallelectricitysalescouldgenerate
substantialrevenues,especiallysincelargeincreasesinpriceoftenhavelittleeffecton
consumption.Thismightbecounterproductive,however,asitwouldreducethecost‐
effectivenessofbothEVsandheatpumps,whichcouldslowtheiradoption,although
thisriskcouldbemitigatedbytheintroductionofCO
2
prices.
Naturalgasiscurrentlylesstaxedthantransportfuelsinmostcountries.Introducingand
raising CO
2
prices for natural gas used in buildings, mostly for heating, would accelerate
energyefficiencyimprovementsandboostgovernmentrevenues,althoughcarewouldbe
neededtoavoiddisproportionatelyimpactinglow‐incomehouseholds.Taxingnaturalgas
used in industry would improve the competitiveness of less carbon‐intensive fuels and
technologies such as hydrogen, but would run the risk of undermining the international
competitiveness of energy‐intensive sectors and carbon leakage intheabsenceof
co‐ordinatedglobalactionorbordercarbon‐taxadjustments.
4.5.4 Innovation
Without a major accelerationin clean energy innovation, reaching net‐zero emissions by
2050willnotbeachievable.Technologiesthatareavailableonthemarkettodayprovide
nearlyalloftheemissionsreductionsrequiredto2030intheNZEtoputtheworldontrack
for net‐zero emissions by 2050. However, reaching net‐zero emissions will require the
widespreaduseafter2030oftechnologiesthatarestillunderdevelopmenttoday.In2050,
almost50% of CO
2
emissionsreductionsintheNZEcomefromtechnologiescurrently at
demonstrationorprototypestage(Figure4.22).Thisshareisevenhigherinsectorssuchas
heavyindustryandlong‐distancetransport.Majorinnovationeffortsarevitalinthisdecade
sothatthetechnologiesnecessaryfornet‐zeroemissionsreachmarketsassoonaspossible.
Figure 4.22
Global CO
2
emissions changes by technology maturity category
in the NZE
IEA.Allrightsreserved.
While the emissions reductions in 2030 mostly rely on technologies on the market, those
under development today account for almost half of the emissions reductions in 2050
‐60
‐45
‐30
‐15
0
15
30
2030 2050
GtCO₂
Activity
Behaviour
Mature
Marketuptake
Demonstration
Largeprototype
Smallprototype/lab
Netreductions
Onthemarket
Underdevelo
p
ment
Chapter 4 | Wider implications of achieving net-zero emissions 185
4
InnovationcyclesforearlystagecleanenergytechnologiesaremuchmorerapidintheNZE
thanwhathastypicallybeenachievedhistorically,andmostcleanenergytechnologiesthat
havenotbeendemonstratedatscaletodayreachmarketsby2030atthelatest.Thismeans
thetimefromfirstprototypetomarketintroductionisonaverage20%fasterthanthefastest
energytechnologydevelopmentsinthepast,andaround40%fasterthanwasthecasefor
solarPV (Figure4.23).Technologies at the demonstration stage,such as CCUSin cement
productionorlow‐emissionsammonia‐fuelledships,arebroughtintothemarketinthenext
threetofouryears. Hydrogen‐based steel production,directaircapture (DAC) and other
technologiesatthelargeprototypestagereachthemarketinaboutsixyears,whilemost
technologiesatsmallprototypestage–suchassolidstaterefrigerant‐freecoolingorsolid
statebatteries–dosowithinthecomingnineyears.
Figure 4.23
Time from first prototype to market introduction for selected
technologies in the NZE and historical examples
IEA.Allrightsreserved.
Technology development cycles are cut by around 20%
from the fastest developments seen in the past
Note: H
2
= hydrogen; CCUS = carbon capture, utilisation and storage; LED = light‐emittingdiode; Li‐ion =
lithium‐ion.
Sources:IEAanalysisbasedonCarbonEngineering,2021;Greco,2019;Tenova,2018;Gross,2018;European
CementResearchAcademy,2012;Kamaya,2011;Zemships,2008.
Anaccelerationofthismagnitudeisclearlyambitious.Itrequirestechnologiesthatarenot
yet available on the market to be demonstrated very quickly at scale in multiple
configurationsandinvariousregionalcontexts.Inmostcases,thesedemonstrationsarerun
in parallel in the NZE. This is in stark contrast with typical practice in technology
development:learningisusuallytransferredacrossconsecutivedemonstrationprojectsin
differentcontextstobuildconfidencebeforewidespreaddeploymentcommences.
Theaccelerationthatisneededalsorequiresalargeincreaseininvestmentindemonstration
projects.IntheNZE,USD90billionismobilisedassoonaspossibletocompleteaportfolio
1950 1960 1970 1980 1990 2000 2010 2020 2030
H₂ship
CCUSincementproduction
H₂directreducediron
Directaircapture
Solid‐statebattery
Solid‐statecooling
LEDs
Windpower
SolarPV
Li‐ionbattery
Smallprotoype Largeprototype Demonstration
Upto2020:
Remainingtimetomarket‐ NZE
Years fromprototypetomarket
13
16
30
10
16
20
10
30
30
20
Fasthistoricalexamples
IEA. All rights reserved.
186 International Energy Agency | Special Report
ofdemonstrationprojectsbefore2030:thisismuchmorethantheroughlyUSD25billion
budgeted by governments to 2030. Most of these projects are concerned with the
electrification of end‐uses, CCUS, hydrogen and sustainable bioenergy, mainly for long‐
distancetransportandheavyindustrialapplications.
Increasedpublicfundinghelps to managetherisks of such first‐of‐a‐kindprojectsandto
leverageprivateinvestmentinresearchanddevelopment(R&D)intheNZE.Thisrepresents
a reversal of recent trends: government spending on energy R&D worldwide, including
demonstrationprojects,hasfallenasashareofGDPfromapeakofalmost0.1%in1980to
just0.03%in2019.Publicfundingalsobecomesbetteralignedwiththeinnovationsneeded
to reach net‐zero emissions. In the NZE, electrification, CCUS, hydrogen and sustainable
bioenergyaccountfornearlyhalfofthecumulativeemissionsreductionsto2050.Justthree
technologiesarecriticalinenablingaround15%ofthecumulativeemissionsreductionsin
the NZE between 2030 and 2050: advanced high‐energy density batteries, hydrogen
electrolysersandDAC.
GovernmentsdriveinnovationintheNZE
Bringingnewenergytechnologiestomarketcanoftentakeseveral decades, but the
imperativeofreachingnet‐zeroemissionsgloballyby2050meansthatprogresshastobe
muchfaster.Experiencehasshownthattheroleofgovernmentiscrucialinshorteningthe
timeneededtobringnewtechnologytomarketandtodiffuseitwidely(IEA,2020i).The
governmentroleincludeseducatingpeople,fundingR&D,providingnetworksforknowledge
exchange,protectingintellectualproperty,usingpublicprocurementtoboostdeployment,
helping companies innovate, investing in enabling infrastructure and setting regulatory
frameworksformarketsandfinance.
Knowledgetransferfromfirst‐movercountriescanalsohelpintheaccelerationneeded,and
isparticularlyimportantintheearlyphasesofadoptionwhennewtechnologiesaretypically
notcompetitivewithincumbenttechnologies.Forexample,inthecaseofsolarPV,national
laboratoriesplayedakeyroleintheearlydevelopmentphaseintheUnitedStates,projects
supporteddirectlybygovernmentinJapancreatedmarketnichesforinitialdeploymentand
governmentprocurementandincentivepoliciesinGermany,Italy, Spain, United States,
China, Australia and India fostered a global market. Lithium‐ion (Li‐ion) batteries were
initiallydevelopedthroughpublicandprivateresearchthattookplacemostlyinJapan,their
firstenergy‐relatedcommercialoperationwasmadepossibleintheUnitedStates,andmass
manufacturingtodayisprimarilyinChina.
Manyofthebiggestcleanenergytechnologychallengescouldbenefitfromamoretargeted
approachtospeedupprogress(DiazAnadon,2012;Mazzucato,2018).IntheNZE,concerted
government action leverages private sector investment and leads to advances in clean
energytechnologiesthatarecurrentlyatdifferentstagesofdevelopment.
To 2030, the focus of government action is on bringing new zero‐ or low‐emissions
technologiestomarket.Forexample,intheNZE,steelstartstobeproducedusinglow‐
emissionshydrogenatthescaleofaconventionalsteelplant,largeshipsstartto be
Chapter 4 | Wider implications of achieving net-zero emissions 187
4
fuelled by low‐emissions ammoniaand electric trucks begin operating on solid state
batteries.Inparallel,thereisrapid acceleration in the deployment of low‐emissions
technologiesthatarealreadyavailableonthe market but thathavenotyetreached
mass market scale, bringing down the costs of manufacturing, construction and
operatingsuchtechnologiesduetolearning‐by‐doingandeconomiesofscale.
From 2030 to 2040, technology advances are consolidated to scale up nascent low‐
emissions technologies and expand clean energy infrastructure. Clean energy
technologies that are in the laboratory or at small prototype stagetodaybecome
commercial.Forexample,fuelsarereplacedbyelectricityincementkilnsandsteam
crackersforhighvaluechemicalsproduction.
From2040to2050,technologiesataveryearlystageofdevelopmenttodayareadopted
in promising niche markets. By 2050, clean energy technologies thatareat
demonstrationorlargeprototypestagetodaybecomemainstreamforpurchasesand
new installations, and they compete with present conventional technologies in all
regions.Forexample,ultrahigh‐energydensitybatteriesareusedinaircraftforshort
flights.
4.5.5 Internationalco‐operation
The pathway to net‐zero emissions by 2050 will require an unprecedented level of
internationalco‐operationbetweengovernments.Thisisnotonlyamatterofallcountries
participatingineffortstomeetthenetzerogoal,butalsoofallcountriesworkingtogether
in an effective and mutually beneficial manner. Achieving net‐zero emissions will be
extremelychallengingforallcountries,butthechallengesaretoughestandthe solutions
leasteasytodeliverinlowerincomecountries,andtechnicalandfinancialsupportwillbe
essential to ensure the early stage deployment of key mitigation technologies and
infrastructureinmanyofthesecountries.Withoutinternationalco‐operation,emissionswill
notfalltonetzeroby2050.
Therearefouraspectsofinternationalco‐operationthatareparticularlyimportant(Victor,
GeelsandSharpe,2019).
Internationaldemandsignalsandeconomiesofscale.Internationalco‐operationhas
beencriticaltothecostreductionsseeninthepastformanykeyenergytechnologies.
Itcanaccelerateknowledgetransferandpromoteeconomiesofscale.Itcanalsohelp
alignthecreationofnewdemandforcleanenergytechnologiesandfuelsinoneregion
withthedevelopmentofsupplyinotherregions.Thesebenefitsneedtobeweighed
against the importance of creating domestic jobs and industrial capacities, and of
ensuringsupplychainresilience.
Managingtradeandcompetitiveness.Industriesthatoperateinanumberofcountries
need standardisation to ensure inter‐operability. Progress on innovation and clean
energytechnologydeploymentinsectorssuchasheavyindustryhasbeeninhibitedin
the past by uncoordinated national policies and a lack of internationally agreed
IEA. All rights reserved.
188 International Energy Agency | Special Report
standards. The development of such standards could accelerate energy technology
developmentanddeployment.
Innovation,demonstrationanddiffusion.CleanenergyR&Dandpatentingiscurrently
concentrated in a handful of places: United States, Europe, Japan, Korea and China
accountedfor more than 90% ofclean energy patentsin 2014‐18. Progress towards
net‐zero emissions would be increasedbymovingswiftlytoextend experience and
knowledgeofcleanenergytechnologiesincountriesthatarenotinvolvedintheirinitial
development,andbyfundingfirst‐of‐a‐kinddemonstrationprojectsinemergingmarket
anddevelopingeconomies.Internationalprogrammestofunddemonstrationprojects,
especiallyinsectorswheretechnologiesarelargeandcomplex,wouldacceleratethe
innovationprocess(IEA,2020i).
Carbondioxideremoval(CDR)programmes.CDRtechnologiessuchasbioenergyand
DACequippedwithCCUSareessentialtoprovideemissionsreductionsatagloballevel.
Internationalco‐operationisneededtofundandcertifytheseprogrammes,soasto
makethemostofsuitableland,renewable energy potential and storage resources,
wherevertheymaybe.Internationalemissionstradingmechanismscouldplayarolein
offsettingemissionsinsomesectorsorareaswithnegativeemissions,thoughanysuch
mechanismswouldrequireahighdegreeofco‐ordinationtoensuremarketfunctioning
andintegrity.
The NZE assumes that international co‐operation policies, measures and efforts are
introducedtoovercomethesehurdles.Toexplorethepotentialimplicationsofafailureto
doso,wehavedevisedaLowInternationalCo‐operationCase(Box4.2).Thisexamineswhat
wouldhappenifnationaleffortstomitigateclimatechangerampupinlinewiththelevelof
effortintheNZEbutco‐operationframeworksarenotdevelopedatthesamespeed.Itshows
thatthelackofinternationalco‐operationhas a majorimpactoninnovation,technology
demonstration,marketco‐ordinationandultimatelyontheemissionspathway.
Box 4.2
Framing the Low International Co-operation Case
TodeveloptheLowInternationalCo‐operationCase,technologiesandmitigationoptions
were assessed and grouped based on their current degree of maturity and the
importanceofinternationalco‐operationtotheirdeployment.Maturetechnologiesin
marketsthatarefirmlyestablishedandthathavea lowexposuretointernationalco‐
operation are assumed to have the same deployment pathways as in the NZE.
Technologiesandmitigationoptionswhereco‐operationisneededtoachievescaleand
avoidduplication,thathavealargeexposuretointernationaltradeandcompetitiveness,
thatdependonlargeandverycapitalintensivedemonstrationprogrammes, or that
requiresupporttocreatemarketpullandstandardisationtoensureinter‐operability,are
assumedtobedeployedmoreslowly(MalhotraandSchmidt,2020).Comparedwiththe
NZE,thesetechnologiesaredelayedby510yearsintheirinitialdeploymentinadvanced
economiesandby10‐15yearsinemergingmarketanddevelopingeconomies.
Chapter 4 | Wider implications of achieving net-zero emissions 189
4
Figure 4.24 CO
2
emissions in the Low International Co-operation Case
and the NZE
IEA.Allrightsreserved.
Without international co-operation, the transition to net zero would be delayed by decades
Weak international co‐operation slows the deployment of mitigation options that are
currently in the demonstration phase (Figure4.24). This includes emissions reductions in
heavyindustry,trucks,aviation,shippingandCDR.Theenergytransitionproceedsunevenly
asaresult.Overthenext20yearsintheLowInternationalCo‐operationCase,emissions
declineatarapidbutstillslowerpacethanintheNZEinelectricitygeneration,cars,light
industryandbuildings.However,emissionsreductionsaremuchslowerinotherareas.After
themid‐2030s,thepaceofemissionsreductionsworldwideslowsmarkedlyrelativetothe
NZE,andthetransitiontonetzeroisdelayedbydecades.Justover40%ofthe15GtCO
2
of
emissionsremainingin2050areinheavyindustry,wheretheslowerpaceofdemonstration
and diffusion of mitigation technologies is particularly significant (Figure4.25). A further
one‐thirdoftheresidualemissionsin2050arefromaviation,shippingandtrucks.Herethe
slowerscaleupanddiffusionofadvancedbiofuels,hydrogen‐basedfuelsandhigh‐energy
densitybatterieshindersprogress.Theabsenceofco‐operationtosupportthedeployment
ofnewprojectsinemergingmarketanddevelopingeconomiesmeans that emissions
reductionstherearemuchslowerthanintheNZE.
These results highlight the importance for governments of strengthening international
co‐operation.Astrongpushisneededtoaccelerateinnovationandthedemonstrationof
keytechnologies,especiallyforcomplextechnologiesinemergingmarketanddeveloping
economies where costs for first‐of‐a‐kind projectsaregenerally higher, and to address
concernsaboutinternationaltradeandcompetitivenesssoastoensureajusttransitionfor
all.
10
20
30
40
2010 2030 2050 2070 2090
GtCO₂
NZE
LowInternationalCo‐operationCase
IEA. All rights reserved.
190 International Energy Agency | Special Report
Figure 4.25 CO
2
emissions in the Low International Co-operation Case and
the NZE in selected sectors in 2050
IEA.Allrightsreserved.
CO
2
emissions in 2050 in the Low International Co-operation Case
are concentrated in the industry and transport sectors
Note:Otherenergysector=fuelproductionanddirectaircapture.
‐2
0
2
4
6
8
Heavy
industry
Aviationand
shipping
Trucks Electricity
generation
Otherenergy
sector
Cars Light
industry
GtCO₂
LowInternationalCo‐operationCase NZE
ANNEXES
IEA. All rights reserved.
Annex A | Tables for scenario projections 193
AnnexA
Tables for scenario projections
Generalnotetothetables
ThisannexincludesglobalhistoricalandprojecteddatafortheNet‐ZeroEmissionsby2050
scenario for the following data sets: energy supply, energy demand, gross electricity
generation and electrical capacity, carbon dioxide (CO
2
) emissions from fossil fuel
combustionandindustrialprocesses,andselectedeconomicandactivityindicators.
ThedefinitionsforfuelsandsectorsareinAnnexC.Commonabbreviationsusedinthetables
include: EJ = exajoules; CAAGR = compound average annual growthrate;CCUS=carbon
capture,utilisationandstorage.ConsumptionoffossilfuelsinfacilitieswithoutCCUSare
classifiedas“unabated”.
Bothinthetextofthisreportandinthetables,roundingmayleadtominordifferences
betweentotalsandthesumoftheirindividualcomponents.Growthratesarecalculatedon
acompoundaverageannualbasisandaremarked“n.a.”whenthebaseyeariszeroorthe
valueexceeds200%.Nilvaluesaremarked“‐”.
TodownloadthetablesinExcelformatgoto:iea.li/nzedata.
Datasources
Theformalbaseyearforthescenarioprojectionsis2019,asthisisthelastyearforwhicha
completepicture of energy demandandproduction is available.However, wehaveused
morerecentdatawhenavailable,andweincludeour2020estimatesforenergyproduction
anddemandinthisannex.Estimatesfortheyear2020arebasedonupdatesoftheIEA’s
GlobalEnergyReviewreportswhicharederivedfromanumberofsources,includingthe
latestmonthlydatasubmissionstotheIEAsEnergyDataCentre,otherstatisticalreleases
fromnationaladministrations,andrecentmarketdatafromtheIEAMarketReportSeries
thatcovercoal,oil,naturalgas,renewablesandpower.
Historical data for gross electrical capacity are drawn from the S&P Global Market
Intelligence World Electric Power Plants Database (March 2020 version) and the
InternationalAtomicEnergyAgencyPRISdatabase.
Definitionalnote:A.1.Energysupplyandtransformationtable
Totalenergysupply(TES)isequivalenttoelectricityandheatgenerationplus“otherenergy
sector”excludingelectricityandheat,plustotalfinalconsumption(TFC)excludingelectricity
andheat.TESdoesnotincludeambientheatfromheatpumpsorelectricitytrade.Solarin
TESincludessolarPVgeneration,concentratingsolarpowerandfinalconsumptionofsolar
thermal.OtherrenewablesinTESincludegeothermal,andmarine(tideandwave)energy
for electricity and heat generation. Hydrogen production and biofuels production in the
otherenergysectoraccountfortheenergyinputrequiredtoproducemerchanthydrogen
(mainlynaturalgasandelectricity)andfortheconversionlossestoproducebiofuels(mainly
primary solid biomass) used in the energy sector. While not itemised separately, non‐
renewablewasteandothersourcesareincludedinTES.
IEA. All rights reserved.
194 International Energy Agency | Special Report
Definitionalnote:A.2.Energydemandtable
Sectorscomprisingtotalfinalconsumption(TFC)includeindustry(energyuseandfeedstock),
transport,buildings(residential,servicesandnon‐specifiedother)andother(agricultureand
othernon‐energyuse).Energydemandfrominternationalmarineandaviationbunkersare
includedintransporttotals.
Definitionalnote:A.3.Electricitytables
Electricity generation expressed in terawatt‐hours (TWh) and installed electrical capacity
dataexpressedingigawatts(GW)arebothprovidedonagrossbasis(i.e.includesownuse
bythegenerator).Projectedgrosselectricalcapacityisthesum of existing capacity and
additions,lessretirements.Whilenotitemisedseparately,othersourcesareincludedintotal
electricitygeneration.
Definitionalnote:A.4.CO
2
emissionstable
Total CO
2
includes carbon dioxide emissions from the combustion of fossil fuels and
non‐renewable wastes, from industrial and fuel transformation processes (process
emissions)aswellasCO
2
removals.ThreetypesofCO
2
removalsarepresented:
Captured and stored emissions from the combustion of bioenergy and renewable
wastes(typicallyelectricitygeneration).
Capturedandstoredprocessemissionsfrombiofuelsproduction.
Capturedandstoredcarbondioxidefromtheatmosphere,whichisreportedasdirect
aircarboncaptureandstorage(DACCS).
The first two entries are often reported as bioenergy with carboncaptureandstorage
(BECCS).NotethatsomeoftheCO
2
capturedfrombiofuelsproductionanddirectaircapture
isusedtoproducesyntheticfuels,whichisnotincludedasCO
2
removal.
Total CO
2
captured includes the carbon dioxide captured from CCUS facilities(suchas
electricitygenerationorindustry)andatmosphericCO
2
capturedthroughdirectaircapture
butexcludesthatcapturedandusedforureaproduction.
Definitionalnote:A.5.Economicandactivityindicators
The emission intensity expressed in kilogrammes of carbon dioxideperkilowatthour
(kgCO
2
/kWh)iscalculatedbasedonelectricity‐onlyplantsandtheelectricitycomponentof
combinedheatandpower(CHP)plants.
1
Other abbreviations used include: PPP = purchasing power parity;GJ=gigajoules;
Mt=milliontonnes;pkm=passengerkilometres;tkm=tonneskilometres; m
2
=square
metres.
 
1
Toderivetheassociatedelectricity‐onlyemissionsfromCHPplants,weassumethattheheatproductionof
aCHPplantis90%efficientandtheremainderofthefuelinputisallocatedtoelectricitygeneration.
Table A.1: Energy supply and transformation
Energysupply(EJ) Shares(%) CAAGR(%)
2019 2020 2030 2040 2050 2020 2030 2050
2020‐
2030
2020‐
2050
Totalenergysupply 612 587 547 535 543 100 100 100 ‐0.7 ‐0.3
Renewables 67 69 167 295 362 12 30 67 9.3 5.7
Solar 4 5 32 78 109 1 6 20 21 11
Wind 5 6 29 67 89 1 5 16 17 9.6
Hydro 15 16 21 27 30 3 4 6 2.9 2.2
Modernsolidbioenergy 31 32 54 73 73 5 10 14 5.3 2.8
Modernliquidbioenergy 4 3 12 14 15 1 2 3 14 4.9
Moderngaseousbioenergy 2 2 5 10 14 0 1 3 10 6.4
Otherrenewables 4 5 13 24 32 1 2 6 11 6.7
Traditionaluseofbiomass 25 25 ‐ ‐ ‐ 4 ‐ ‐ n.
a. n.a.
N
uclear 30 29 41 54 61 5 8 11
3.5 2.4
Un
abatednaturalgas 139 136 116 44 17 23 21 3 ‐1.6 ‐6
.6
N
aturalgaswithCCUS 0 1 13 31 43 0 2 8
37 16
Oil 190
173 137 79 42 29 25 8 ‐2.3
‐4.6
ofwhichnon‐energyuse 28 27 32 31 29 5 6 5 1.4 0.2
Un
abatedcoal 160 154 68 16 3 26 12 1
‐7.9 ‐12
Co
alwithCCUS 0 0 4 16 14 0 1 3
60 22
E
lectricityandheatsectors 233 230 240 308 371 100 100 100 0.4 1.6
Renewables 36 38 107 220 284 17 44 77 11 6.9
SolarPV 2 3 25 61 84 1 10 23 24 12
Wind 5 6 29 67 89 2 12 24 17 9.6
Hydro 15 16 21 27 30 7 9 8 2.9 2.2
Bioenergy 9 10 18 35 39 4 8 10 6.3 4.6
Otherrenewables 4 4 14 30 42 2 6 11 14 8.5
Hydrogen ‐ ‐ 5 11 11 ‐ 2 3 n.
a.
n.
a.
A
mmonia ‐ ‐ 1 2 2 ‐ 0 0 n
.a.
n
.a.
Nuclear 30 29 41 54 61 13 17 16 3.5 2.4
Un
abatednaturalgas 56 55 49 4 2 24 21 0
‐1.1
‐1
1
N
aturalgaswithCCUS ‐ ‐ 1 5 5 ‐ 1 1 n.
a.
n.
a.
Oil 9
 8 2 0 0 4 1 0 ‐12
‐14
Un
abatedcoal 102 100 30 0 0 43 12 0
‐11 ‐34
Co
alwithCCUS 0 0 3 10 7 0 1 2
55 19
Otherenergysector 57 57 61 76 91 100 100 100 0.7 1.5
Hydrogenproduction ‐ 0 21 49 70 0 35 77 66 23
Biofuelsproduction 5 6 12 15 12 10 20 13 8 2.7
Annex A | Tables for scenario projections
195
A
IEA. All rights reserved.
Table A.2: Energy demand
Energydemand(EJ) Shares(%) CAAGR(%)
2019 2020 2030 2040 2050 2020 2030 2050
2020‐
2030
2020‐
2050
Totalfinalconsumption 435 412 394 363 344 100 100 100 ‐0.4 ‐0.6
Electricity 82 81 103 140 169 20 26 49 2.4 2.5
Liquidfuels 175 158 143 96 66 38 36 19 ‐1.0 ‐2.9
Biofuels 4 3 12 14 15 1 3 4 14 4.9
Ammonia ‐ ‐ 1 3 5 ‐ 0 1 n
.a.
n
.a.
Syntheticoil ‐ ‐ 0 2 5 ‐ 0 1 n.a. n.a.
O
il 171 154 129 77 42 37 33 12 ‐1.8 ‐4.2
Gaseousfuels 70 68 68 60 53 16 17 15
0.1 ‐0.8
Bio
methane 0 0 2 5 8 0 1 2
25 13
Hyd
rogen 0 0 6 12 20 0 2 6
54 20
S
yntheticmethane ‐ ‐ 0 1 4 ‐ 0 1 n.a
.
n.
a.
N
aturalgas 70 67 58 40 20 16 15 6
‐1.4 ‐4.0
S
olidfuels 92 89 61 46 35 22 16 10
3.6 ‐3.0
Biomass 39 39 24 25 25 9 6 7 ‐4.8 ‐1.4
Co
al 53 50 38 21 10 12 10 3 ‐2.8
‐5.3
Heat 13
13 12 9 6 3 3 2
1.2 ‐2.7
Oth
er 3 3 7 11 15 1 2 4
8.2 5.2
Industr
y 162 157 170 169 160 100 100 100 0.8 0.1
Electricity 35 35 47 62 74 22 28 46 3.0 2.5
Liquidfuels 31 31 31 27 23 20 18 15 ‐0.2 ‐0.9
Oil 31 31 31 27 23 20 18 15 ‐0.2 ‐0.9
Gaseousfuels 32 32 35 34 28 20 21 18 1.0 ‐0.4
Biomethane 0 0 1 2 4 0 0 3 22 15
Hydrogen ‐ 0 3 4 5 0 2 3 44 15
Unabatednaturalgas 32 32 30 22 9 20 18 6 ‐0.5 4.0
NaturalgaswithCCUS 0 0 1 5 7 0 1 4 38 18
Solidfuels 58 52 51 40 30 34 30 18 ‐0.3 ‐1.9
Biomass 10 9 15 19 20 6 9 13 5.2 2.8
Unabatedcoal 48 44 35 15 3 28 20 2 ‐2.3 ‐9.0
CoalwithCCUS 0 0 1 5 7 0 1 4 91 31
Heat 6 6 6 3 2 4 3 1 ‐1.2 ‐4.5
Other 0 0 1 3 4 0 1 2 33 14
Ironandsteel 36 33 37 36 32 21 22 20 1.1 ‐0.2
Chemicals 22 20 26 26 25 13 15 15 2.7 0.7
Cement 12 16 11 11 10 10 7 7 ‐3.3 ‐1.3
International Energy Agency | Special Report196
Table A.2: Energy demand
Energydemand(EJ) Shares(%) CAAGR(%)
2019 2020 2030 2040 2050 2020 2030 2050
2020‐
2030
2020‐
2050
Transport 122 105 102 85 80 100 100 100 ‐0.3 ‐0.9
Electricity 1 1 7 22 35 1 7 44 17 11
Liquidfuels 115 99 89 53 30 94 87 38 ‐1.0 ‐3.9
Biofuels 4 3
11 12 11
3
11 14 14 4.3
Oil 111 96 76 35 9 91 74 12 ‐2.2 ‐7.4
Gaseousfuels 5 5 6 10 15 5 6 18 2.1 3.7
Biomethane 0 0 1 1 2 0 0 2 23 11
Hydrogen 0 0 1 6 13 0 1 16 92 34
Naturalgas 5 5 4 2 0 5 4 0 ‐1.5 ‐11
Road 90 81 73 57 50 77 72 63 ‐0.9 ‐1.6
Passengercars 47 41 30 19 17 39 29 21 ‐3.1 ‐2.9
Trucks 27 25 28 24 22 24 27 28 1.1 ‐0.4
Aviation 14 8 13 13 14 8 13 18 4.6 1.7
Shipping 12 11 11 10 10 10 11 12 0.4 ‐0.3
Buildings 129 127 99 89 86 100 100 100 ‐2.4 ‐1.3
Electricity 43 42 45 51 57 33 46 66 0.7 1.0
Liquidfuels 13 13 9 4 2 10 10 2 ‐3.2 ‐6.0
Biofuels 0 0 0 1 1 0 0 1 26 12
Oil 13 13 9 4 1 10 9 1 ‐3.4 ‐7.7
Gaseousfuels 30 28 23 13 6 22 23 7 ‐2.1 ‐4.9
Biomethane 0 0 1 2 2 0 1 2 29 11
Hydrogen ‐ 0 2 2 2 0 2 2 103 27
Naturalgas 30 28 19 7 1 22 20 1 ‐3.8 ‐12
Solidfuels 34 34 10 7 6 27 10 7 ‐11 ‐5.5
Modernbiomass 5 5 9 7 6 4 9 7 6.9 0.9
Traditionaluseofbiomass 25 25 ‐ ‐ ‐ 20 ‐ ‐ n.a. n
.a.
Co
al 4 4 1 0 0 3 1 0 ‐1
2 ‐21
Heat 7
7 6 5 4 5 6 5 ‐1.
2 ‐1.6
Oth
er 2 3 5 8 11 2 5 12 7.1
4.8
Residential 91 90 67 59 58 71 67 67 ‐3.0 ‐1.5
Services 38 36 32 30 28 29 33 33 ‐1.2 ‐0.9
Other 22 23 22 20 18 100 100 100 ‐0.5 ‐0.9
Annex A | Tables for scenario projections
197
A
IEA. All rights reserved.
Table A.3: Electricity
ElectricityGeneration(TWh) Shares(%) CAAGR(%)
2019 2020 2030 2040 2050 2020 2030 2050
2020‐
2030
2020‐
2050
Totalgeneration 26922 26778 37316 56553 71164 100 100 100 3.4 3.3
Renewables 7153 7660 22817 47521 62333 29 61 88 12 7.2
SolarPV 665 821 6970 17031 23469 3 19 33 24 12
Wind 1423 1592 8008 18787 24785 6 21 35 18 9.6
Hydro 4294 4418 5870 7445 8461 17 16 12 2.9 2.2
Bioenergy 665 718 1407 2676 3279 3 4 5 7.0 5.2
ofwhichBECCS ‐ ‐ 129 673 842 ‐ 0 1 n.a. n.a.
CSP 14 14 204 880 1386 0 1 2 31 17
Geothermal 92 94 330 625 821 0 1 1
13 7.5
Marine 1 2 27 77 132 0 0 0 28 14
N
uclear 2792 2698 3777 4855 5497 10 10 8
3.4 2.4
Hyd
rogen‐based ‐ ‐ 875 1857 1713 ‐ 2 2 n.
a.
n.
a.
F
ossilfuelswithCCUS 1 4 459 1659 1332 0 1 2
61 21
Co
alwithCCUS 1 4 289 966 663 0 1 1
54 19
N
aturalgaswithCCUS ‐ ‐ 170 694 669 ‐ 0 1 n
.a.
n
.a.
Un
abatedfossilfuels 16941 16382 9358 632 259 61 25 0
5.4 ‐13
Coal 9832 9426 2947 0 0 35 8 0 ‐11 ‐40
N
aturalgas 6314 6200 6222 626 253 23 17 0
0.0 ‐10
O
il 795 756 189 6 6 3 1 0 ‐13 ‐15
ElectricalCapacity(GW) Shares(%) CAAGR(%)
2019 2020 2030 2040 2050 2020 2030 2050
2020‐
2030
2020‐
2050
Totalcapacity 7484 7795 14933 26384 33415 100 100 100 6.7 5.0
Renewables 2707 2994 10293 20732 26568 38 69 80 13 7.5
SolarPV 603 737 4956 10980 14458 9 33 43 21 10
Wind 623 737 3101 6525 8265 9 21 25 15 8.4
Hydro 1306 1327 1804 2282 2599 17 12 8 3.1 2.3
Bioenergy 153 171 297 534 640 2 2 2 5.7 4.5
ofwhichBECCS ‐ ‐ 28 125 152 ‐ 0 0 n.a. n.a.
CSP 6 6 73 281 426 0 0 1 28 15
Geothermal 15 15 52 98 126 0 0 0
13 7.4
Marin
e 1 1 11 32 55 0 0 0
34 16
N
uclear 415 415 515 730 812 5 3 2
2.2 2.3
Hyd
rogen‐based ‐ ‐ 139 1455 1867 ‐ 1 6 n.
a.
n.
a.
F
ossilfuelswithCCUS 0 1 81 312 394 0 1 1
66 25
Co
alwithCCUS 0 1 53 182 222 0 0 1
59 22
N
aturalgaswithCCUS ‐ ‐ 28 130 171 ‐ 0 1 n.
a.
n.
a.
Un
abatedfossilfuels 4351 4368 3320 1151 677 56 22 2 ‐2
.7
6.0
C
oal 2124 2117 1192 432 158 27 8 0 ‐5.6 ‐8.3
Naturalgas 1788 1829 1950 679 495 23 13 1 0.6 ‐4.3
O
il 440 422 178 39 25 5 1 0 ‐8.3 ‐9.0
Batterystorage 11 18 585 2005 3097 0 4 9
42 19
International Energy Agency | Special Report198
Table A.4: CO
2
emissions
A
CAAGR(%)
2019 2020 2030 2040 2050
2020‐
2030
2020‐
2050
TotalCO
2
*
35926 33903 21147 6316 0
‐4.6 n.a.
Combustionactivities(+) 33499 31582 19254 6030 940 ‐4.8 ‐11
Coal 14660 14110 5915 1299 195 ‐8.3 ‐13
Oil 11505 10264 7426 3329 928 ‐3.2 ‐7.7
Naturalgas 7259 7138 5960 1929 566 ‐1.8 ‐8.1
Bioenergyandwaste
75 71 ‐48 ‐528 ‐748 n
.a.
n
.a.
Industr
yremovals(‐) 1 1 214 914 1186
75 28
Bio
fuelsproduction 1 1 142 385 553
68 24
Directaircap
ture ‐ ‐ 71 528 633 n.
a.
n.
a.
E
lectricityandheatsectors 13821 13504 5816 ‐81 ‐369 ‐8.1
n.a.
C
oal 10035 9786 2950 102 69 ‐11 ‐15
Oil 655 628 173 6 6 ‐12 ‐14
N
aturalgas 3131 3089 2781 268 128 ‐1.0
‐10
Bio
energyandwaste ‐ ‐ ‐87 ‐457 ‐572 n.
a.
n.
a.
Otherenerg
ysector* 1457 1472 679 ‐85 ‐368 ‐7.4
n.a.
F
inalconsumption* 20647 18928 14723 7011 1370 ‐2.5 ‐8.4
Coal 4486 4171 2935 1186 117 ‐3.5 ‐11
Oil 10272 9077 6973 3242 880 ‐2.6 ‐7.5
Naturalgas 3451 3332 2668 1453 303 ‐2.2 ‐7.7
Bioenergyandwaste 75 71 40 ‐70 ‐176 ‐5.6 n.a.
Industry* 8903 8478 6892 3485 519 ‐2.0 ‐8.9
Ironandsteel 2507 2349 1778 859 220 ‐2.7 ‐7.6
Chemicals 1344 1296 1199 654 66 ‐0.8 ‐9.5
Cement 2461 2334 1899 906 133 ‐2.0 ‐9.1
Transport 8290 7153 5719 2686 689 ‐2.2 ‐7.5
Road 6116 5483 4077 1793 340 ‐2.9 ‐8.9
Passengercars 3121 2746 1626 547 85 ‐5.1 ‐11
Trucks 1835 1721 1614 890 198 ‐0.6 ‐6.9
Aviation 1019 621 783 469 210 2.4 ‐3.5
Shipping 883 800 705 348 122 ‐1.3 ‐6.1
Buildings 3007 2860 1809 685 122 ‐4.5 ‐10
Residential 2030 1968 1377 541 108 ‐3.5 ‐9.2
Services 977 892 432 144 14 ‐7.0 ‐13
TotalCO
2
removals
1 1 317 1457 1936 79 29
TotalCO
2
captured
40 40 1665 5619 7602 45 19
*Includesindustrialprocessemissions.
CO
2
emissions(MtCO
2
)
199
Annex A | Tables for scenario projections
IEA. All rights reserved.
Table A.5: Economic and Activity Indicators
Indicator CAAGR(%)
2019 2020 2030 2040 2050
2020‐
2030
2020‐
2050
Population(million) 7672 7753 8505 9155 9692 0.9 0.7
GDP(USD2019billion,PPP) 134710 128276 184037 246960 316411 3.7 3.1
GDPpercapita(USD2019,PPP) 17558 16545 21638 26975 32648 2.7 2.3
TES/GDP(GJperUSD1000,PPP) 4.543 4.578 2.973 2.164 1.716 ‐4.2 ‐3.2
TFC/GDP(GJperUSD1000,PPP) 3.231 3.208 2.139 1.468 1.086 ‐4.0 ‐3.5
TESpercapita(GJ) 79.77 75.74 64.33 58.38 56.03 ‐1.6 ‐1.0
CO
2
intensityofelectricitygeneration
(kgCO
2
perkWh)
0.468 0.438 0.138 ‐0.001 ‐0.005 ‐11 n.a.
Activity CAAGR(%)
2019 2020 2030 2040 2050
2020‐
2030
2020‐
2050
Industrialproduction
Primarychemicals(Mt) 538 529 641 686 688 1.9 0.9
Steel(Mt) 1869 1781 1937 1958 1987 0.8 0.4
Cement(Mt) 4215 4054 4258 4129 4032 0.5 ‐0.0
15300 14261 15775 19159 24517 1.0 1.8
26646 25761 38072 49756 59990 4.0 2.9
8506 5474 10271 11573 14566 6.5 3.3
Transport
Passengercars(billionvkm)
Trucks(billiontkm)
Aviation(billionpkm)
Shipping(billiontkm)
107225 109153 155621 209905 291032 3.6 3.3
Buildings
Servicesfloorarea(millionm
2
)
49670 49825 58867 68576 78157 1.7 1.5
Residentialfloorarea(millionm
2
)
190062 192558 235745 290696 345183 2.0 2.0
Millionhouseholds 2095 2116 2435 2765 3051 1.4 1.2
International Energy Agency | Special Report
200
Annex B | Technology costs 201
AnnexB
Technology costs
Electricitygeneration
Table B.1 Electricity generation technology costs by selected region
in the NZE
Financing
rate
(%)
Capitalcosts
($/kW)
Capacityfactor
(%)
Fuel,CO
2

andO&M
($/MWh)
LCOE
($/MWh)

All 2020 2030 2050 2020 2030 2050 2020 2030 2050 2020 2030 2050
UnitedStates
Nuclear 8.0 5000 4800 4500 90 80 75 30 30 30 105 110 110
Coal 8.0 2100 2100 2100 20 n.a. n.a. 90 170 235 220 n.a. n.a.
GasCCGT 8.0 1000 1000 1000 55 25 n.a. 50 80 105 70 125 n.a.
SolarPV 3.7 1140 620 420 21 22 23 10 10 10 50 30 20
Windonshore 3.7 1540 1420 1320 42 43 44 10 10 10 35 35 30
Windoffshore 4.5 4040 2080 1480 42 46 48 35 20 15 115 60 40
EuropeanUnion
Nuclear 8.0 6600 5100 4500 75 75 70 35 35 35 150 120 115
Coal 8.0 2000 2000 2000 20 n.a. n.a. 120 205 275 250 n.a. n.a.
GasCCGT 8.0 1000 1000 1000 40 20 n.a. 65 95 120 100 150 n.a.
SolarPV 3.2 790 460 340 13 14 14 10 10 10 55 35 25
Windonshore 3.2 1540 1420 1300 29 30 31 15 15 15 55 45 40
Windoffshore 4.0 3600 2020 1420 51 56 59 15 10 5 75 40 25
China
Nuclear 7.0 2800 2800 2500 80 80 80 25 25 25 65 65 60
Coal 7.0 800 800 800 60 n.a. n.a. 75 135 195 90 n.a. n.a.
GasCCGT 7.0 560 560 560 45 35 n.a. 75 100 120 90 115 n.a.
SolarPV 3.5 750 400 280 17 18 19 10 5 5 40 25 15
Windonshore 3.5 1220 1120 1040 26 27 27 15 10 10 45 40 40
Windoffshore 4.3 2840 1560 1000 34 41 43 25 15 10 95 45 30
India
Nuclear 7.0 2800 2800 2800 70 70 70 30 30 30 75 75 75
Coal 7.0 1200 1200 1200 50 n.a. n.a. 35 50 75 65 n.a. n.a.
GasCCGT 7.0 700 700 700 55 50 n.a. 45 45 50 55 60 n.a.
SolarPV 5.8 580 310 220 20 21 21 5 5 5 35 20 15
Windonshore 5.8 1040 980 940 26 28 29 10 10 10 50 45 40
Windoffshore 6.6 2980 1680 1180 32 37 38 25 15 10 130 70 45
Notes:O&M=operationandmaintenance;LCOE=levelisedcostof electricity; kW = kilowatt; MWh =
megawatt‐hour;CCGT=combined‐cyclegasturbine;n.a.=notapplicable.CostcomponentsandLCOEfigures
arerounded.
Sources:IEAanalysis;IRENARenewableCostingAlliance;IRENA(2020).
IEA. All rights reserved.
202 International Energy Agency | Special Report
Major contributors to the LCOE include: overnight capital costs; capacity factor that
describes the average output over the year relative to the maximum rated capacity
(typical values provided); the cost of fuel inputs; plus operation and maintenance.
Economiclifetimeassumptionsare25yearsforsolarPV,onshoreandoffshorewind.
Weightedaveragecostsofcapital(WACC)reflectanalysisforutility‐scalesolarPVinthe
WorldEnergyOutlook2020(IEA,2020)andforoffshorewindfromtheOffshoreWind
Outlook2019(IEA,2019).OnshorewindwasassumedtohavethesameWACCasutility‐
scalesolarPV.AstandardWACCwasassumedfornuclearpower,coal‐andgas‐fired
powerplants(7‐8%basedonthestageofeconomicdevelopment).
Fuel,CO
2
andO&Mcostsreflecttheaverageoverthetenyearsfollowingtheindicated
dateintheprojections.
Thecapitalcostsfornuclearpowerrepresentthe“nth‐of‐a‐kind”costsfornewreactor
designs,withsubstantialcostreductionsfromthefirst‐of‐a‐kindprojects.
Batteriesandhydrogen
Table B.2 Capital costs for batteries and hydrogen production
technologies in the NZE
2020 2030 2050
Batterypacksfortransportapplications(USD/kWh) 130‐155 75‐90 55‐80
Low‐temperatureelectrolysers(USD/kW
e
) 835‐1300 255‐515 200‐390
NaturalgaswithCCUS(USD/kWH
2
) 1155‐2010 990‐1725 935‐1625
Notes:kWh=kilowatthour;kW
e
= kilowattelectric;CCUS=carbon capture, utilisation and storage; H
2
=
hydrogen.CapitalcostsforelectrolysersandhydrogenproductionfromnaturalgaswithCCUSareovernight
costs.
Source:IEAanalysis.
Annex C | Definitions 203
AnnexC
Definitions
This annex provides general information on terminology used throughout this report
including:unitsandgeneralconversionfactors;definitionsoffuels,processesandsectors;
regionalandcountrygroupings;andabbreviationsandacronyms.
Units
Area km
2
squarekilometre
Mha millionhectares

Batteries Wh/kg Watthoursperkilogramme

Coal Mtce milliontonnesofcoalequivalent(equals0.7Mtoe)

Distance km kilometre

Emissions ppm partspermillion(byvolume)
tCO
2
tonnesofcarbondioxide
GtCO
2
‐eq gigatonnesofcarbon‐dioxideequivalent(using100‐yearglobal
warmingpotentialsfordifferentgreenhousegases)
kgCO
2
‐eq kilogrammesofcarbon‐dioxideequivalent
gCO
2
/km grammesofcarbondioxideperkilometre
kgCO
2
/kWh kilogrammesofcarbondioxideperkilowatt‐hour

Energy EJ exajoule
PJ petajoule
TJ terajoule
GJ gigajoule
MJ megajoule
boe barrelofoilequivalent
toe tonneofoilequivalent
ktoe thousandtonnesofoilequivalent
Mtoe milliontonnesofoilequivalent
MBtu millionBritishthermalunits
kWh kilowatt‐hour
MWh megawatt‐hour
GWh gigawatt‐hour
TWh terawatt‐hour

Gas bcm billioncubicmetres
tcm trillioncubicmetres

Mass kg kilogramme(1000kg=1tonne)
kt kilotonnes(1tonnex10
3
)
Mt milliontonnes(1tonnex10
6
)
Gt gigatonnes(1tonnex10
9
)

IEA. All rights reserved.
204 International Energy Agency | Special Report
Monetary USDmillion 1USdollarx10
6
USDbillion 1USdollarx10
9
USDtrillion 1USdollarx10
12
USD/tCO
2
USdollarspertonneofcarbondioxide

Oil kb/d thousandbarrelsperday
mb/d millionbarrelsperday
mboe/d millionbarrelsofoilequivalentperday

Power W watt(1joulepersecond)
kW kilowatt(1wattx10
3
)
MW megawatt(1wattx10
6
)
GW gigawatt(1wattx10
9
)
TW terawatt(1wattx10
12
)
Generalconversionfactorsforenergy
Multipliertoconvertto:
EJ Gcal Mtoe MBtu GWh
Convertfrom:
EJ 1 238.8x10
6
23.88 9.47.8x10
3
2.778x10
5
Gcal 4.1868x10
‐9
1 10
‐7
3.968 1.163x10
‐3
Mtoe 4.1868x10
‐2
10
7
1 3.968x10
7
11630
MBtu 1.0551x10
‐9
0.252 2.52x10
‐8
1 2.931x10
‐4
GWh 3.6x10
‐6
860 8.6x10
‐5
3412 1
Note:Thereisnogenerallyaccepteddefinitionofboe;typicallytheconversionfactorsusedvaryfrom7.15to
7.40boepertoe.
Currencyconversions
Exchangerates
(2019annualaverage)
1USdollar(USD)
equals:
BritishPound 0.78
ChineseYuanRenminbi 6.91
Euro 0.89
IndianRupee 70.42
IndonesianRupiah 14147.67
JapaneseYen 109.01
RussianRuble 64.74
SouthAfricanRand 14.45
Source:OECDNationalAccountsStatistics:purchasingpowerparitiesandexchangeratesdataset,July2020.
Annex C | Definitions 205
C
Definitions
Advancedbioenergy:Sustainablefuelsproducedfromnon‐foodcropfeedstocks,whichare
capableofdeliveringsignificantlifecyclegreenhousegasemissionssavingscomparedwith
fossil fuel alternatives, and which do not directly compete withfoodandfeedcropsfor
agriculturallandorcauseadversesustainabilityimpacts.Thisdefinitiondiffersfromtheone
usedfor“advancedbiofuelsinUSlegislation,whichisbasedonaminimum50%lifecycle
greenhousegasreductionandwhich,therefore,includessugarcaneethanol.
Agriculture:Includesallenergyusedonfarms,inforestryandforfishing.
Agriculture, forestry and other land use (AFOLU) emissions: Includes greenhouse gas
emissionsfromagriculture,forestryandotherlanduse.
Ammonia(NH
3
):Isacompoundofnitrogenandhydrogen.Itcanbeuseddirectlyasafuelin
directcombustionprocess,andinfuelcellsorasahydrogencarrier.Tobealow‐carbonfuel,
ammoniamustbeproducedfromlowcarbonhydrogen,thenitrogenseparatedviathe
Haberprocess,andelectricityneedsaremetbylow‐carbonelectricity.
Aviation:Thistransportmodeincludesbothdomesticandinternationalflightsandtheiruse
ofaviationfuels.Domesticaviationcoversflightsthatdepartandlandinthesamecountry;
flightsformilitarypurposesarealsoincluded.Internationalaviationincludesflightsthatland
inacountryotherthanthedeparturelocation.
Back‐upgenerationcapacity:Householdsandbusinessesconnectedtoamainpowergrid
mayalsohaveback‐upelectricitygenerationcapacitythat,intheeventofdisruption,can
provide electricity. Back‐up generators are typically fuelled with diesel or gasoline and
capacitycanbeaslittleasafewkilowatts.Suchcapacityisdistinctfrommini‐gridandoff‐
gridsystemsthatarenotconnectedtoamainpowergrid.
Biodiesel:Diesel‐equivalent,processedfuelmadefromthetransesterification(achemical
processthatconvertstriglyceridesinoils)ofvegetableoilsandanimalfats.
Bioenergy: Energy content in solid, liquid and gaseous products derived from biomass
feedstocksandbiogas.Itincludessolidbiomass,liquidbiofuelsandbiogases.
Biogas:Amixtureofmethane,carbondioxideandsmallquantitiesofothergasesproduced
byanaerobicdigestionoforganicmatterinanoxygen‐freeenvironment.
Biogases:Includebiogasandbiomethane.
Biomethane:Biomethaneisanear‐puresourceofmethaneproducedeitherbyupgrading
biogas(aprocessthatremovesanyCO
2
andothercontaminantspresentinthebiogas)or
through the gasification of solid biomass followed by methanation.Itisalsoknownas
renewablenaturalgas.
Buildings: The buildings sector includes energy used in residential, commercial and
institutionalbuildingsandnon‐specifiedother.Buildingenergyuseincludesspaceheating
andcooling,waterheating,lighting,appliancesandcookingequipment.
IEA. All rights reserved.
206 International Energy Agency | Special Report
Bunkers:Includesbothinternationalmarinebunkersandinternationalaviationbunkers.
Capacity credit:Proportionofthecapacitythatcanbereliablyexpectedtogenerate
electricityduringtimesofpeakdemandinthegridtowhichitisconnected.
Carboncapture,utilisationandstorage(CCUS):TheprocessofcapturingCO
2
emissionsfrom
fuel combustion, industrial processes or directly from the atmosphere. Captured CO
2
emissionscanbestoredinundergroundgeologicalformations,onshoreoroffshoreorused
asaninputorfeedstocktocreateproducts.
Clean energy: Includes renewables, energy efficiency, low‐carbon fuels, nuclear power,
batterystorageandcarboncapture,utilisationandstorage.
Cleancookingfacilities:Cookingfacilitiesthatareconsideredsafer,moreefficientandmore
environmentally sustainablethan the traditional facilities thatmakeuseofsolidbiomass
(such as a three‐stone fire). This refers primarily to improved solid biomass cookstoves,
biogassystems,liquefiedpetroleumgasstoves,ethanolandsolarstoves.
Coal:Includesbothprimarycoal(includinglignite,cokingandsteamcoal)andderivedfuels
(includingpatentfuel,browncoalbriquettes,cokeovencoke,gascoke,gas‐worksgas,coke‐
ovengas,blastfurnacegasandoxygensteelfurnacegas).Peatisalsoincluded.
Concentrating solar power (CSP): Solar thermal power/electric generation systems that
collectandconcentratesunlighttoproducehightemperatureheattogenerateelectricity.
Conventional liquid biofuels:Fuelsproducedfromfoodcropfeedstocks.Theseliquid
biofuelsarecommonlyreferredtoasfirstgenerationandincludesugarcaneethanol,starch‐
basedethanol,fattyacidmethylesther(FAME)andstraightvegetableoil(SVO).
Decomposition analysis: Statistical approach that decomposes an aggregate indicator to
quantifytherelativecontributionofasetofpre‐definedfactorsleadingtoachangeinthe
aggregate indicator. This report uses an additive index decomposition of the type
LogarithmicMeanDivisiaIndex(LMDI).
Demand‐sideintegration(DSI):Consistsoftwotypesofmeasures:actionsthatinfluence
loadshapesuchasenergyefficiencyandelectrification;andactionsthatmanageloadsuch
asdemand‐sideresponse.
Demand‐sideresponse(DSR):Describesactionswhichcaninfluencetheloadprofilesuchas
shifting the load curve in time without affecting the total electricity demand, or load
shedding such as interrupting demand for short duration or adjusting the intensity of
demandforacertainamountoftime.
Dispatchable generation:Referstotechnologieswhosepoweroutputcanbereadily
controlled‐increasedtomaximumratedcapacityordecreasedtozero‐inordertomatch
supplywithdemand.
Electricitydemand:Definedastotalgrosselectricitygenerationlessownusegeneration,
plusnettrade(importslessexports),lesstransmissionsanddistributionlosses.
Annex C | Definitions 207
C
Electricitygeneration:Definedasthetotalamountofelectricitygeneratedbypoweronlyor
combined heat and power plants including generation required for own use. This is also
referredtoasgrossgeneration.
Energy sector CO
2
emissions: Carbon dioxide emissions from fuel combustion (excluding
non‐renewablewaste).Notethatthisdoesnotincludefugitiveemissionsfromfuels,CO
2
fromtransport,storageemissionsorindustrialprocessemissions.
EnergysectorGHGemissions:CO
2
emissionsfromfuel
combustionplusfugitiveandvented
methane,andnitrousoxide(N
2
O)emissionsfromtheenergyandindustrysectors.
Energyservices:Seeusefulenergy.
Ethanol:Referstobio‐ethanolonly.Ethanolisproducedfromfermentinganybiomasshigh
incarbohydrates.Today,ethanolismadefromstarchesandsugars,butsecond‐generation
technologieswillallowittobemadefromcelluloseandhemicellulose,thefibrousmaterial
thatmakesupthebulkofmostplantmatter.
Fischer‐Tropschsynthesis:Catalyticproductionprocessfortheproductionofsyntheticfuels.
Naturalgas,coalandbiomassfeedstockscanbeused.
Gases:Includesnaturalgas,biogases,syntheticmethaneandhydrogen.
Geothermal:Geothermalenergyisheatderivedfromthesub‐surfaceoftheearth.Water
and/orsteamcarrythegeothermalenergytothesurface.Dependingonitscharacteristics,
geothermal energy can be used for heating and cooling purposes or be harnessed to
generatecleanelectricityifthetemperatureisadequate.
Heat(end‐use):Canbeobtainedfromthecombustionoffossilorrenewablefuels,direct
geothermalorsolarheatsystems,exothermicchemicalprocessesandelectricity(through
resistanceheatingorheatpumpswhichcanextractitfromambientairandliquids).This
category refers to the wide range of end‐uses, including space and water heating, and
cookinginbuildings,desalinationandprocessapplicationsinindustry.Itdoesnotinclude
coolingapplications.
Heat (supply): Obtained from the combustion of fuels, nuclear reactors, geothermal
resourcesandthecaptureofsunlight.Itmaybeusedforheatingorcooling,orconverted
intomechanicalenergyfor transportor electricitygeneration.Commercialheatsoldis
reportedundertotalfinalconsumptionwiththefuelinputsallocatedunderelectricityand
heatsectors.
Hydrogen:Hydrogenisusedintheenergysystemtorefinehydrocarbonfuels and as an
energycarrierinitsownright.Itisalsoproducedfromother energy products for use in
chemicalsproduction.Asanenergycarrieritcanbeproducedfromhydrocarbonfuelsor
fromtheelectrolysisofwaterwithelectricity,andcanbeburnedorusedinfuelcellsfor
electricityandheatinawidevarietyofapplications.Tobelow‐carbonhydrogen,eitherthe
emissionsassociatedwithfossil‐basedhydrogenproductionmustbeprevented(forexample
by carbon capture, utilisation and storage) or the electricity input to hydrogen produced
fromwatermustbelowcarbonelectricity.Inthisreport,final consumption of hydrogen
IEA. All rights reserved.
208 International Energy Agency | Special Report
includesdemandforpurehydrogenandexcludeshydrogenproducedandconsumedonsite
by the same entity. Demand for hydrogen‐based fuels such as ammonia or synthetic
hydrocarbonsareconsideredseparately.
Hydrogen‐based fuels: Include ammonia and synthetic hydrocarbons (gases and liquids).
Hydrogen‐basedisusedinfigurestorefertohydrogenandhydrogen‐basedfuels.
Hydropower:Theenergycontentoftheelectricityproducedinhydropowerplants,assuming
100%efficiency.Itexcludesoutputfrompumpedstorageandmarine(tideandwave)plants.
Industry:Thesectorincludesfuelusedwithinthemanufacturingandconstructionindustries.
Keyindustrybranchesincludeironandsteel,chemicalsandpetrochemicals,cement,and
pulpandpaper.Consumptionoffuelsforthetransportofgoodsisreportedaspartofthe
transportsector,whileconsumptionbyoff‐roadvehiclesisreportedunderindustry.
International aviation bunkers: Includes the deliveries of aviation fuels to aircraft for
international aviation. Fuels used by airlines for their road vehicles are excluded. The
domestic/internationalsplitisdeterminedonthebasisofdepartureandlandinglocations
andnotbythenationalityoftheairline.Formanycountriesthisincorrectlyexcludesfuels
usedbydomesticallyownedcarriersfortheirinternationaldepartures.
Internationalmarinebunkers:Coversfuelsdeliveredtoshipsofallflagsthatareengagedin
internationalnavigation.Theinternationalnavigationmaytakeplaceatsea,oninlandlakes
andwaterways,andincoastalwaters.Consumptionbyshipsengagedindomesticnavigation
isexcluded.Thedomestic/internationalsplitisdeterminedonthebasisofportofdeparture
andportofarrival,andnotbytheflagornationalityoftheship.Consumptionbyfishing
vesselsandbymilitaryforcesisexcludedandincludedinresidential,servicesandagriculture.
Investment:Allinvestmentdataandprojectionsreflectspendingacross thelifecycleofa
project,i.e.thecapitalspentisassignedtotheyearwhenitisincurred.Investmentsforoil,
gasand coal includeproduction, transformation and transportation;thoseforthepower
sector include refurbishments, uprates, new builds and replacementsforallfuelsand
technologies for on‐grid, mini‐grid and off‐grid generation, as well as investment in
transmissionanddistribution,andbattery storage.Investmentdataarepresentedinreal
termsinyear‐2019USdollarsunlessotherwisestated.
Light‐dutyvehicles(LDV):includepassengercarsandlightcommercialvehicles(grossvehicle
weight<3.5tonnes).
Liquidbiofuels:Liquidfuelsderivedfrombiomassorwastefeedstocksandincludeethanol
andbiodiesel.Theycanbeclassifiedasconventionalandadvancedliquidbiofuelsaccording
tothebioenergyfeedstocksandtechnologiesusedtoproducethemandtheirrespective
maturity. Unless otherwise stated, liquid biofuels are expressed in energy‐equivalent
volumesofgasolineanddiesel.

Annex C | Definitions 209
C
Liquids:Includesoil,liquidbiofuels(expressedinenergy‐equivalentvolumesofgasolineand
diesel),syntheticoilandammonia.
Low‐carbon electricity: Includes renewable energy technologies, hydrogen‐based
generation, nuclear power and fossil fuel power plants equippedwithcarboncapture,
utilisationandstorage.
Low‐emissions fuels: Include liquid biofuels, biogas and biomethane, hydrogen, and
hydrogen‐basedfuelsthatdonotemitanyCO
2
fromfossilfuelsdirectlywhenusedandalso
emitverylittlewhenbeingproduced.
Marine:Representsthemechanicalenergyderivedfromtidalmovement,wavemotionor
oceancurrentandexploitedforelectricitygeneration.
Merchanthydrogen:Hydrogenproducedbyonecompanytoselltoothers;equivalentto
hydrogenreportedintotalfinalconsumption.
Mini‐grids:Smallgridsystemslinkinganumberofhouseholdsorotherconsumers.
Modernbioenergy:Includesmodernsolidbiomass,liquidbiofuelsandbiogasesharvested
fromsustainablesources.Itexcludesthetraditionaluseofbiomass.
Modern energy access: Includes household access to a minimum level of electricity;
householdaccesstosaferandmoresustainablecookingandheatingfuels,andstoves;access
thatenablesproductiveeconomicactivity;andaccessforpublicservices.
Modernrenewables:Includesallusesofrenewableenergywiththeexceptionoftraditional
useofsolidbiomass.
Modern solid biomass:Referstotheuseofsolidbiomass in improved cookstoves and
moderntechnologiesusingprocessedbiomasssuchaspellets.
Naturalgas:Comprisesgasesoccurringindeposits,whetherliquefiedorgaseous,consisting
mainlyofmethane.Itincludesboth“non‐associated”gasoriginatingfromfieldsproducing
hydrocarbonsonlyingaseousform,and“associated”gasproducedinassociationwithcrude
oilaswellasmethanerecoveredfromcoalmines(collierygas).Naturalgasliquids(NGLs),
manufacturedgas(producedfrommunicipalorindustrialwaste,orsewage)andquantities
ventedorflaredarenotincluded.Gasdataincubicmetresareexpressedonagrosscalorific
valuebasisandaremeasuredat15°Candat760mmHg(“StandardConditions”).Gasdata
expressedintonnesofoilequivalent,mainlyforcomparisonreasonswithotherfuels,areon
anetcalorificbasis.Thedifferencebetweenthenetandthegrosscalorificvalueisthelatent
heatofvaporisationofthewatervapourproducedduringcombustionofthefuel(forgasthe
netcalorificvalueis10%lowerthanthegrosscalorificvalue).
Naturalgasliquids(NGLs):Liquidorliquefiedhydrocarbonsproducedinthemanufacture,
purificationandstabilisationofnaturalgas.Thesearethoseportionsofnaturalgaswhich
arerecoveredasliquidsinseparators,fieldfacilitiesorgasprocessingplants.NGLsinclude
butarenotlimitedtoethane(whenitisremovedfromthenaturalgasstream),propane,
butane,pentane,naturalgasolineandcondensates.
IEA. All rights reserved.
210 International Energy Agency | Special Report
Networkgases:Includesnaturalgas,biomethane,syntheticmethaneandhydrogenblended
inagasnetwork.
Non‐energyuse:Fuelsusedforchemicalfeedstocksandnon‐energyproducts.Examplesof
non‐energyproductsincludelubricants,paraffinwaxes,asphalt,bitumen,coaltarsandoils
astimberpreservatives.
Nuclear:Referstotheprimaryenergyequivalentoftheelectricityproducedbyanuclear
plant,assuminganaverageconversionefficiencyof33%.
Off‐gridsystems:Stand‐alonesystemsforindividualhouseholdsorgroupsofconsumers.
Offshorewind:Referstoelectricityproducedbywindturbinesthatareinstalledinopen
water,usuallyintheocean.
Oil:Oilproductionincludesbothconventionalandunconventionaloil.Petroleumproducts
include refinery gas, ethane, liquid petroleum gas, aviation gasoline, motor gasoline, jet
fuels,kerosene,gas/dieseloil,heavyfueloil,naphtha,white spirit, lubricants, bitumen,
paraffin,waxesandpetroleumcoke.
Otherenergysector:Coverstheuseofenergybytransformationindustriesandtheenergy
losses in converting primary energy into a form that can be usedinthefinalconsuming
sectors.Itincludeslossesbygasworks,petroleumrefineries,coalandgastransformation
andliquefaction,biofuelsproductionandtheproductionofhydrogenandhydrogen‐based
fuels.Italsoincludesenergyownuseincoalmines,inoilandgasextraction,indirectair
capture, in biofuels production and in electricity and heat production. Transfers and
statisticaldifferencesarealsoincludedinthiscategory.
Powergeneration:Referstofueluseinelectricityplants,heatplantsandcombinedheatand
power(CHP)plants.Bothmainactivityproducerplantsandsmallplantsthatproducefuel
fortheirownuse(auto‐producers)areincluded.
Productiveuses:Energyusedtowardsaneconomicpurpose:agriculture,industry,services
andnon‐energyuse.Someenergydemandfromthetransportsector,e.g.freight,couldalso
beconsideredasproductive,butistreatedseparately.
Renewables:Includesbioenergy,geothermal,hydropower,solarphotovoltaics (PV),
concentratingsolarpower(CSP),windandmarine(tideandwave)energyforelectricityand
heatgeneration.
Residential:Energyusedbyhouseholdsincludingspaceheatingandcooling,waterheating,
lighting,appliances,electronicdevicesandcookingequipment.
Services: Energy used in commercial facilities, e.g. hotels, offices, catering, shops, and
institutionalbuildings,e.g.schools,hospitals,offices.Energyuseinservicesincludesspace
heatingandcooling,waterheating,lighting,equipment,appliancesandcookingequipment.
Shalegas:Naturalgascontainedwithinacommonlyoccurringrockclassifiedasshale.Shale
formationsarecharacterisedbylowpermeability,withmorelimitedabilityofgastoflow
through the rock than is the case with a conventional reservoir. Shale gas is generally
producedusinghydraulicfracturing.
Annex C | Definitions 211
C
Shipping/navigation: This transport sub‐sector includes both domestic and international
navigationandtheiruseofmarinefuels.Domesticnavigationcoversthetransportofgoods
orpersonsoninlandwaterwaysandfornationalseavoyages(startsandendsinthesame
countrywithoutanyintermediateforeignport).Internationalnavigationincludesquantities
of fuels delivered to merchant ships (including passenger ships) of any nationality for
consumptionduringinternationalvoyagestransportinggoodsorpassengers.
Solarphotovoltaic(PV):Electricityproducedfromsolarphotovoltaiccells.
Solid biomass: Includes charcoal, fuelwood, dung, agricultural residues, woodwasteand
othersolidwastes.
Steamcoal:Typeofcoalthatismainlyusedforheatproductionorsteam‐raisinginpower
plantsand,toalesserextent,inindustry.Typically,steamcoalisnotofsufficientqualityfor
steelmaking.Coalofthisqualityisalsocommonlyknownasthermalcoal.
Syntheticmethane:Low‐carbonsyntheticmethaneisproducedthroughthemethanationof
low‐carbonhydrogenandcarbondioxidefromabiogenicoratmosphericsource.
Synthetic oil: Low‐carbon synthetic oil produced through Fischer Tropsch conversion or
methanolsynthesisfromsyngas,amixtureofhydrogen(H
2
)andcarbonmonoxide(CO).
Total energy supply (TES): Represents domestic demand only and is broken down into
electricityandheatgeneration,otherenergysectorandtotalfinalconsumption.
Totalfinalconsumption(TFC):Isthesumofconsumptionbythevariousend‐usesectors.
TFCisbrokendownintoenergydemandinthefollowingsectors: industry (including
manufacturing and mining), transport, buildings (including residential and services) and
other (including agriculture and non‐energy use). It excludes international marine and
aviationbunkers,exceptatworldlevelwhereitisincludedinthetransportsector.
Totalfinalenergyconsumption(TFEC):Isavariabledefinedprimarilyfortrackingprogress
towardstarget7.2oftheUNSustainableDevelopmentGoals.Itincorporates total final
consumption(TFC)byend‐usesectorsbutexcludesnon‐energyuse.Itexcludesinternational
marineandaviationbunkers,exceptatworldlevel.Typicallythisisusedinthecontextof
calculatingtherenewableenergyshareintotalfinalenergyconsumption(Indicator7.2.1of
theSustainableDevelopmentGoals),whereTFECisthedenominator.
Totalprimaryenergydemand(TPED):Seetotalenergysupply
Traditionaluseofsolidbiomass:Referstotheuseofsolidbiomasswithbasictechnologies,
suchasathree‐stonefire,oftenwithnoorpoorlyoperatingchimneys.
Transport:Fuelsandelectricityusedinthetransportofgoodsorpeoplewithinthenational
territoryirrespectiveoftheeconomicsectorwithinwhichtheactivityoccurs.Thisincludes
fuelandelectricitydeliveredtovehiclesusingpublicroadsorforuseinrailvehicles;fuel
deliveredtovesselsfordomesticnavigation;fueldeliveredtoaircraftfordomesticaviation;
and energy consumed in the delivery of fuels through pipelines. Fuel delivered to
international marine and aviation bunkers is presented only at the world level and is
excludedfromthetransportsectoratadomesticlevel.
IEA. All rights reserved.
212 International Energy Agency | Special Report
Trucks: Includes medium trucks (gross vehicle weight 3.5‐15 tonnes) and heavy trucks
(>15tonnes).
Usefulenergy:Referstotheenergythatisavailabletoend‐userstosatisfytheirneeds.This
isalsoreferredtoasenergyservicesdemand.Asresultoftransformationlossesatthepoint
ofuse,theamountofusefulenergyislowerthanthecorrespondingfinalenergydemandfor
mosttechnologies.Equipmentusingelectricityoftenhashigherconversionefficiencythan
equipmentusing other fuels, meaningthat fora unit of energy consumed electricitycan
providemoreenergyservices.
Wind:electricityproducedbywindturbinesfromthekineticenergyofwind.
Woodyenergycrops:Short‐rotationplantingsofwoodybiomassforbioenergyproduction,
suchascoppicedwillowandmiscanthus.
Variablerenewableenergy(VRE):Referstotechnologieswhosemaximumoutputatany
timedependsontheavailabilityoffluctuatingrenewableenergyresources.VREincludesa
broadarrayoftechnologiessuchaswindpower,solarPV,run‐of‐riverhydro,concentrating
solarpower(wherenothermalstorageisincluded)andmarine(tidalandwave).
Zero‐carbon‐ready buildings: A zero‐carbon‐ready building is highly energy efficient and
eitherusesrenewableenergydirectly,oranenergysupplythatcanbefullydecarbonised,
suchaselectricityordistrictheat.
Zero‐emissionsvehicles(ZEVs):VehicleswhicharecapableofoperatingwithouttailpipeCO
2
emissions(batteryelectricvehiclesandfuelcellvehicles).
Regionalandcountrygroupings
Advancedeconomies:OECDregionalgroupingandBulgaria,Croatia,Cyprus
1,2
,Maltaand
Romania.
Africa:NorthAfricaandsub‐SaharanAfricaregionalgroupings.
AsiaPacific:SoutheastAsiaregionalgroupingandAustralia,Bangladesh,China,India,Japan,
Korea, Democratic People’s Republic of Korea, Mongolia, Nepal, NewZealand, Pakistan,
SriLanka,ChineseTaipei,andotherAsiaPacificcountriesandterritories.
3
Caspian:Armenia,Azerbaijan,Georgia,Kazakhstan,Kyrgyzstan,Tajikistan,Turkmenistanand
Uzbekistan.
CentralandSouthAmerica:Argentina,PlurinationalStateofBolivia(Bolivia),Brazil,Chile,
Colombia,CostaRica,Cuba,Curaçao,DominicanRepublic,Ecuador,ElSalvador,Guatemala,
Haiti, Honduras, Jamaica, Nicaragua, Panama, Paraguay, Peru, Suriname, Trinidad and
Tobago,Uruguay,BolivarianRepublicofVenezuela(Venezuela),andotherCentralandSouth
Americancountriesandterritories.
4
China:Includesthe(People'sRepublicof)ChinaandHongKong,China.
Annex C | Definitions 213
C
Figure C.1 Main country groupings
Note:Thismapiswithoutprejudicetothestatusoforsovereigntyoveranyterritory,tothedelimitationofinternationalfrontiersandboundaries
andtothenameofanyterritory,cityorarea.
Developing Asia: Asia Pacific regional grouping excluding Australia, Japan, Korea and
NewZealand.
Emerging market and developing economies: All other countries not included in the
advancedeconomiesregionalgrouping.
Eurasia:CaspianregionalgroupingandtheRussianFederation(Russia).
Europe:EuropeanUnionregionalgroupingandAlbania,Belarus,BosniaandHerzegovina,
North Macedonia, Gibraltar, Iceland, Israel
5
, Kosovo, Montenegro, Norway, Serbia,
Switzerland,RepublicofMoldova,Turkey,UkraineandUnitedKingdom.
European Union: Austria, Belgium, Bulgaria, Croatia, Cyprus
1,2
, Czech Republic, Denmark,
Estonia,Finland,France,Germany,Greece,Hungary,Ireland,Italy, Latvia, Lithuania,
Luxembourg, Malta, Netherlands, Poland, Portugal, Romania, Slovak Republic, Slovenia,
SpainandSweden.
IEA (International Energy Agency): OECD regional grouping excluding Chile, Colombia,
Iceland,Israel,Latvia,LithuaniaandSlovenia.
LatinAmerica:CentralandSouthAmericaregionalgroupingandMexico.
MiddleEast:Bahrain,IslamicRepublicofIran(Iran),Iraq,Jordan,Kuwait,Lebanon,Oman,
Qatar,SaudiArabia,SyrianArabRepublic(Syria),UnitedArabEmiratesandYemen.
Non‐OECD:AllothercountriesnotincludedintheOECDregionalgrouping.
Non‐OPEC:AllothercountriesnotincludedintheOPECregionalgrouping.
IEA. All rights reserved.
214 International Energy Agency | Special Report
NorthAfrica:Algeria,Egypt,Libya,MoroccoandTunisia.
NorthAmerica:Canada,MexicoandUnitedStates.
OECD (Organisation for Economic Co‐operation and Development): Australia, Austria,
Belgium, Canada, Chile, Colombia, Czech Republic, Denmark, Estonia, Finland, France,
Germany, Greece, Hungary, Iceland, Ireland, Israel, Italy, Japan, Korea, Latvia, Lithuania,
Luxembourg,Mexico,Netherlands,NewZealand,Norway,Poland,Portugal,SlovakRepublic,
Slovenia,Spain,Sweden,Switzerland,Turkey,UnitedKingdomandUnitedStates.
OPEC(OrganisationofthePetroleumExportingCountries):Algeria,Angola,Republicofthe
Congo(Congo),EquatorialGuinea,Gabon,theIslamicRepublicofIran(Iran),Iraq,Kuwait,
Libya, Nigeria, Saudi Arabia, United Arab Emirates and Bolivarian Republic of Venezuela
(Venezuela).
SoutheastAsia:BruneiDarussalam,Cambodia,Indonesia,LaoPeople’sDemocraticRepublic
(Lao PDR), Malaysia, Myanmar, Philippines, Singapore, Thailand and VietNam. These
countriesareallmembersoftheAssociationofSoutheastAsianNations(ASEAN).
Sub‐SaharanAfrica:Angola,Benin,Botswana,Cameroon,RepublicoftheCongo(Congo),
Côted’Ivoire,Democratic Republic oftheCongo, Eritrea, Ethiopia, Gabon, Ghana,Kenya,
Mauritius,Mozambique,Namibia,Niger,Nigeria,Senegal,SouthAfrica,SouthSudan,Sudan,
UnitedRepublicofTanzania(Tanzania),Togo,Zambia,ZimbabweandotherAfricancountries
andterritories.
6
Countrynotes
1
NotebyTurkey:Theinformationinthisdocumentwithreferenceto“Cyprus”relatestothesouthernpartof
theisland. Thereisnosingleauthority representingbothTurkishandGreek Cypriotpeopleontheisland.
TurkeyrecognisestheTurkishRepublicofNorthernCyprus(TRNC).Untilalastingandequitablesolutionis
foundwithinthe contextoftheUnitedNations,Turkeyshallpreserveitspositionconcerning the“Cyprus
issue”.
2
NotebyalltheEuropeanUnionMemberStatesoftheOECDandtheEuropeanUnion:TheRepublicofCyprus
isrecognisedby allmembersof the UnitedNations with theexceptionof Turkey.Theinformation inthis
documentrelatestotheareaundertheeffectivecontroloftheGovernmentoftheRepublicofCyprus.
3
Individualdataarenotavailableandareestimatedinaggregatefor:Afghanistan,Bhutan,CookIslands,Fiji,
French Polynesia, Kiribati, Macau (China), Maldives, New Caledonia, Palau, Papua New Guinea, Samoa,
SolomonIslands,Timor‐LesteandTongaandVanuatu.
4
Individualdataarenotavailableandareestimatedinaggregatefor:Anguilla,AntiguaandBarbuda,Aruba,
Bahamas, Barbados, Belize, Bermuda, Bonaire, British Virgin Islands, Cayman Islands, Dominica, Falkland
Islands (Malvinas), French Guiana, Grenada, Guadeloupe, Guyana, Martinique, Montserrat, Saba, Saint
Eustatius,SaintKittsandNevis,SaintLucia,SaintPierreandMiquelon,SaintVincentandGrenadines,Saint
Maarten,TurksandCaicosIslands.
5
ThestatisticaldataforIsraelaresuppliedbyandundertheresponsibilityoftherelevantIsraeliauthorities.
TheuseofsuchdatabytheOECDand/ortheIEAiswithoutprejudicetothestatusoftheGolanHeights,East
JerusalemandIsraelisettlementsintheWestBankunderthetermsofinternationallaw.
6
Individualdataarenotavailableand areestimatedin aggregatefor:Burkina Faso,Burundi,CaboVerde,
Central African Republic, Chad, Comoros, Djibouti, Kingdom of Eswatini, Gambia, Guinea, Guinea‐Bissau,
Lesotho,Liberia,Madagascar,Malawi,Mali,Mauritania,Réunion,Rwanda,SaoTomeandPrincipe,Seychelles,
SierraLeone,SomaliaandUganda.
Annex C | Definitions 215
C
AbbreviationsandAcronyms
AFOLU agricultureforestryandotherlanduse
APC AnnouncedPledgesCase
ASEAN AssociationofSoutheastAsianNations
BECCS bioenergyequippedwithCCUS
BEV batteryelectricvehicles
CCUS carboncapture,utilisationandstorage
CDR carbondioxideremoval
CFL compactfluorescentlamp
CH
4
methane
CHP combinedheatandpower;thetermco‐generationissometimesused
CNG compressednaturalgas
CO carbonmonoxide
CO
2
carbondioxide
CO
2
‐eq carbon‐dioxideequivalent
COP ConferenceofParties(UNFCCC)
CSP concentratingsolarpower
DAC directaircapture
DACCS directaircapturewithcarboncaptureandstorage
DER distributedenergyresources
DSI demand‐sideintegration
DSO distributionsystemoperator
DSR demand‐sideresponse
EAF electricarcfurnaces
EHOB extra‐heavyoilandbitumen
ETP EnergyTechnologyPerspectives
EU EuropeanUnion
EV electricvehicle
FCEV fuelcellelectricvehicle
GDP grossdomesticproduct
GHG greenhousegases
GTL gas‐to‐liquids
HEFA hydrogenatedestersandfattyacids
ICE internalcombustionengine
IEA InternationalEnergyAgency
IIASA InternationalInstituteforAppliedSystemsAnalysis
IMF InternationalMonetaryFund
IOC internationaloilcompany
IPCC IntergovernmentalPanelonClimateChange
LCC
LDVs
LowCCUSCase
light‐dutyvehicles
LCV light‐commercialvehicle
LED light‐emittingdiode
IEA. All rights reserved.
216 International Energy Agency | Special Report
LNG
LPG
MEPS
NDCs
NEA
NGLs
NGV
NOC
NO
X
N
2
O
NZE
OECD
OPEC
PHEV
PLDV
PM
PM
2.5
PPP
PV
R&D
RD&D
SAF
SDG
SO
2
SR1.5
STEPS
T&D
TES
TFC
TFEC
TPED
UEC
UN
UNDP
UNEP
UNFCCC
UK
US
VRE
WEO
WHO
ZEV
liquefiednaturalgas
liquefiedpetroleumgas
minimumenergyperformancestandards
NationallyDeterminedContributions
NuclearEnergyAgency(anagencywithintheOECD)
naturalgasliquids
naturalgasvehicle
nationaloilcompany
nitrogenoxides
nitrousoxide
Net‐ZeroEmissionsScenario
OrganisationforEconomicCo‐operationandDevelopment
OrganizationofthePetroleumExportingCountries
plug‐inhybridelectricvehicles
passengerlight‐dutyvehicle
particulatematter
fineparticulatematter
purchasingpowerparity
photovoltaics
researchanddevelopment
research,developmentanddemonstration
sustainableaviationfuel
SustainableDevelopmentGoals(UnitedNations)
sulphurdioxide
IPCCSpecialReportontheimpactsofglobalwarmingof1.5°C
abovepre‐industriallevels
StatedPoliciesScenario
transmissionanddistribution
totalenergysupply
totalfinalconsumption
totalfinalenergyconsumption
totalprimaryenergydemand
unitenergyconsumption
UnitedNations
UnitedNationsDevelopmentProgramme
UnitedNationsEnvironmentProgramme
UnitedNationsFrameworkConventiononClimateChange
UnitedKingdom
UnitedStates
variablerenewableenergy
WorldEnergyOutlook
WorldHealthOrganization
Zero‐emissionsvehicle
Annex D | References 217
AnnexD
References
Chapter1:Announcednetzeropledgesandtheenergysector
climatewatchdata(2021),https://www.climatewatchdata.org/ndc‐overview.
European Commission (2018), 2018 ‐ VisionforalongtermEUstrategyforreducing
greenhousegasemissions,https://ec.europa.eu/clima/policies/strategies/2050_en.
IEA (International Energy Agency) (2021), Global Energy Review 2021,
https://www.iea.org/reports/global‐energy‐review‐2021.
–(2020a), Sustainable Recovery, https://www.iea.org/reports/sustainable‐recovery/a‐
sustainable‐recovery‐plan‐for‐the‐energy‐sector.
–(2020b),WorldEnergyOutlook2020,https://www.iea.org/reports/world‐energy‐outlook‐
2020.
–(2020c), Energy Technology Perspectives 2020, https://www.iea.org/reports/energy‐
technology‐perspectives‐2020.
–(2020c), World Energy Balances 2020 edition: database documentation,
http://wds.iea.org/wds/pdf/WORLDBAL_Documentation.pdf.
–(2020e),Special Report on Clean Energy Innovation, https://www.iea.org/reports/clean‐
energy‐innovation.
IPCC(IntergovernmentalPanelonClimateChange)(2018),GlobalWarmingof1.5°C.AnIPCC
SpecialReportontheimpactsofglobalwarmingof1.5°Cabovepre‐industriallevels,IPCC,
https://www.ipcc.ch/sr15/.
WRI and WBCSD (World Resources Institute and World Business Council for Sustainable
Development)(2004),TheGreenhouseGasProtocol:ACorporateAccountingandReporting
Standard, WRI and WBCSD, Washington, DC, https://ghgprotocol.org/sites/default/files/
standards/ghg‐protocol‐revised.pdf.
Chapter2:Aglobalpathwaytonet‐zeroCO₂emissionsin2050
Amann, M. et al. (2011), "Cost‐effective control of air quality and greenhouse gases in
Europe:Modellingandpolicyapplications",EnvironmentalModelling,Vol26,pp.1489‐1501.
Anderson et al. (2013), Getting to know GIMF: The Simulation Properties of the Global
Integrated Monetary and Fiscal Model, International Monetary Fund, Washington, DC,
https://www.imf.org/external/pubs/ft/wp/2013/wp1355.pdf.
Assemblee Nationale (2021), (Proposed law aiming to replace domestic flights by train),
PROPOSITIONDELOIvisantàreplacerlesvolsintérieursparletrain,https://www.assemble
e‐nationale.fr/dyn/15/textes/l15b2005_proposition‐loi.
IEA. All rights reserved.
218 International Energy Agency | Special Report
Aydin,E.,D.BrounenandN.Kok(2018),"Informationprovisionandenergyconsumption:
Evidence from a field experiment", Energy Economics, Vol. 71, pp. 403‐411.,
https://doi.org/10.1016/j.eneco.2018.03.008.
Byars,M.,Y.WeiandS.Handy(2017),State‐LevelStrategiesforReducingVehicleMilesof
Travel,https://bit.ly/2LvA6nn.
Climate Assembly United Kingdom (2020), The path to net zero,
https://www.climateassembly.uk/report/read/final‐report.pdf.
ConventionCitoyennepourleClimat(2021),(ProposalsoftheCitizensClimateConvention),
Les Propositions de la Convention Citoyenne pour le Climat,
https://propositions.conventioncitoyennepourleclimat.fr/.
DEFRA(UKDepartmentforEnvironment,Food&RuralAffairs)(2012),Londoncongestion
charge detailed assessment, https://uk‐air.defra.gov.uk/assets/documents/reports/cat09/
0505171128_London_Congestion_Charge_Detailed_Assessment.doc.
European Commission (2021), Urban Access Regulations in Europe,
https://urbanaccessregulations.eu/countries‐mainmenu‐147.
Frank, S. (2021), "Land‐based climate changemitigation potentialswithintheagendafor
sustainable development", Environmental Research Letters, Vol. 16/2, https://doi.org/
10.1088/1748‐9326/abc58a.
IEA (International Energy Agency) (2021), The Role of Critical Minerals in Clean Energy
Transitions, IEA, https://www.iea.org/reports/the‐role‐of‐critical‐minerals‐in‐clean‐energy‐
transitions.
–(2020a), World Energy Balances 2020 edition: database documentation,
http://wds.iea.org/wds/pdf/WORLDBAL_Documentation.pdf.
–(2020b), OutlookforBiogasandBiomethane:Prospectsfororganicgrowth,
https://www.iea.org/reports/outlook‐for‐biogas‐and‐biomethane‐prospects‐for‐organic‐
growth.
–(2020c), World Energy Investment, 2020, https://www.iea.org/reports/world‐energy‐
investment‐2020.
–(2020d),EnergyTechnologyPerspectives2020:SpecialReportonCleanEnergyInnovation,
https://www.iea.org/reports/clean‐energy‐innovation.
–(2019),TheFutureofRail,https://www.iea.org/reports/the‐future‐of‐rail.
IMF(InternationalMonetaryFund)(2020a),June2020:ACrisisLikeNoOther,AnUncertain
Recovery, https://www.imf.org/‐/media/Files/Publications/WEO/2020/Update/June/
English/WEOENG202006.ashx
–(2020b),WorldEconomicOutlookDatabase,April2020Edition,WashingtonDC.
Annex D | References 219
D
IPCC(IntergovernmentalPanelonClimateChange)(2019),ClimateChangeandLand:AnIPCC
Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land
Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems,
https://www.ipcc.ch/srccl/.
–(2018),GlobalWarmingof1.5°C.AnIPCCSpecialReportontheimpactsofglobalwarming
of1.5°Cabovepre‐industriallevelsandrelatedglobalgreenhousegasemissionpathways,in
thecontextofstrengtheningtheglobalresponsetothethreatofclimatechange,sustainable
developmentandeffortstoeradicatepoverty,https://www.ipcc.ch/sr15/.
–(2014),ClimateChange2014:SynthesisReport,ContributionofWorkingGroupsI,IIandIII
totheFifthAssessmentReportoftheIntergovernmentalPanelon Climate Change,
https://www.ipcc.ch/report/ar5/syr/.
Jochemetal.(2020),"Doesfree‐floatingcarsharingreduceprivatevehicleownership?The
caseofSHARENOWinEuropeancities",TransportationResearchPartA:PolicyandPractice,
Vol.141,pp.373‐295,https://doi.org/10.1016/j.tra.2020.09.016.
Laxton, D. et al. (2010), The Global Integrated Monetary and Fiscal Model (GIMF)
TheoreticalStructure,InternationalMonetaryFund,Washington,DC,https://www.imf.org/
~/media/Websites/IMF/imported‐full‐text‐pdf/external/pubs/ft/wp/2010/_wp1034.ashx.
Martin, Shaheen and Lidiker (2010), "Carsharings impact on household vehicle holdings:
ResultsforaNorthAmericanshared‐usevehiclesurvey",Presentedat89thAnnualMeeting
oftheTransportationResearchBoard,WashingtonDC,https://doi.org/10.3141/2143‐19.
Newgate Research and Cambridge Zero (2021), Net Zero Public Dialogue,
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment
_data/file/969401/net‐zero‐public‐dialogue.pdf.
Oxford Economics (2020), OxfordEconomicsGlobalEconomicModel, (database),
https://www.oxfordeconomics.com/global‐economic‐model,August2020update,Oxford.
TFL(TransportforLondon)(2021),Congestionchargefactsheet,https://content.tfl.gov.uk/
congestion‐charge‐factsheet.pdf.pdf.
ToolsofChange(2014),Stockholm's Congestion Pricing,https://www.toolsofchange.com/
userfiles/Stockholm%20Congestion%20Pricing%20‐%20FINAL%202014.pdf.
UNDESA(UnitedNationsDepartmentofEconomicandSocialAffairs)(2019),2019Revision
ofWorldPopulationProspects,https://population.un.org/wpp/.
Wu,W.H.(2019), "Global advanced bioenergypotentialunder environmental protection
policies and societal transformation measures", GCB Bioenergy, Vol. 11, pp. 1041‐1055,
https://doi.org/10.1111/gcbb.12614.
IEA. All rights reserved.
220 International Energy Agency | Special Report
Chapter3:Sectoralpathwaystonet‐zeroemissionsby2050
IEA (International Energy Agency) (2021a), The Role of Critical Minerals in Clean Energy
Transitions, https://www.iea.org/reports/the‐role‐of‐critical‐minerals‐in‐clean‐energy‐
transitions.
–(2021b),GlobalEVOutlook2020,https://www.iea.org/reports/global‐ev‐outlook‐2021.
–(2020a), The Oil and Gas Industry in Energy Transitions, https://www.iea.org/reports/
the‐oil‐and‐gas‐industry‐in‐energy‐transitions.
–(2020b),EnergyTechnologyPerspectives2020,IEA,https://www.iea.org/reports/energy‐
technology‐perspectives‐2020.
–(2019), NuclearPowerinaCleanEnergySystem, https://www.iea.org/reports/nuclear‐
power‐in‐a‐clean‐energy‐system.
UNCTAD(UnitedNationsConferenceonTradeandDevelopment)(2018), Review
of Maritime Transport 2018, UNCTAD, https://unctad.org/en/PublicationsLibrary/
rmt2018_en.pdf.
Chapter4:Widerimplicationsofachievingnet‐zeroemissions
CarbonEngineering(2021),https://carbonengineering.com/our‐story/.
DiazAnadon,L.(2012),“Missions‐orientedRD&Dinstitutionsinenergybetween2000and
2010:AcomparativeanalysisofChina,theUnitedKingdom,andtheUnitedStates”,Research
Policy,Vol.41,pp.1742‐1756,https://doi.org/10.1016/j.respol.2012.02.015.
European Cement Research Academy (2012), ECRA CCS Project: Report on phase III,
https://ecraonline.org/fileadmin/redaktion/files/pdf/ECRA_Technical_Report_CCS_Phase_I
II.pdf.
Feyisa,Dons&Meilby(2014),"Efficiencyofparksinmitigatingurbanheatislandeffect:an
example from Addis Ababa", Landscape and Urban Planning, Vol. 123, pp. 87–95,
https://doi.org/10.1016/j.landurbplan.2013.12.008.
GLPGP(TheGlobalLPGPartnership)(2020),AssessingPotentialforBioLPGProductionand
use within the Cooking Energy Sector in Africa, https://mecs.org.uk/wp
content/uploads/2020/09/GLPGP‐Potential‐for‐BioLPG‐Production‐and‐Use‐as‐Clean‐
Cooking‐Energy‐in‐Africa‐2020.pdf.
Greco,A.etal.(2019),"Areviewofthestateoftheartofsolid‐statecaloriccoolingprocesses
at room‐temperature before 2019", International Journal of Refrigeration, pp. 66‐88,
https://doi.org/10.1016/j.ijrefrig.2019.06.034.
Gross,R.(2018),“Howlongdoesinnovationandcommercialisation in the energy sector
take? Historical case studies of the timescale from invention to widespread
commercialisationintheenergysupplyandend‐usetechnology”,EnergyPolicy,Vol.123,pp.
682‐299,https://doi.org/10.1016/j.enpol.2018.08.061.
Annex D | References 221
D
IEA (International Energy Agency) (2021a), The Role of Critical Minerals in Clean Energy
Transitions, https://www.iea.org/reports/the‐role‐of‐critical‐minerals‐in‐clean‐energy‐
transitions.
–(2021b),ClimateResilience,https://www.iea.org/reports/climate‐resilience.
–(2021c), Enhancing Cyber Resilience in Electricity Systems, https://www.iea.org/
reports/enhancing‐cyber‐resilience‐in‐electricity‐systems.
–(2021d),Conditionsandrequirementsforthetechnicalfeasibilityofapowersystemwitha
highshareofrenewablesinFrancetowards2050,https://www.iea.org/reports/conditions‐
and‐requirements‐for‐the‐technical‐feasibility‐of‐a‐power‐system‐with‐a‐high‐share‐of‐
renewables‐in‐france‐towards‐2050.
–(2020a), World Energy Investment, 2020, https://www.iea.org/reports/world‐energy‐
investment‐2020.
–(2020b),SustainableRecovery:WorldEnergyOutlookSpecialReport,https://www.iea.org/
reports/sustainable‐recovery.
–(2020c),EnergyTechnologyPerspectives:SpecialReportonCarbonCaptureUtilisationand
Storage,https://www.iea.org/reports/ccus‐in‐clean‐energy‐transitions.
–(2020d), OutlookforBiogasandBiomethane:Prospectsfororganicgrowth,
https://www.iea.org/reports/outlook‐for‐biogas‐and‐biomethane‐prospects‐for‐organic‐
growth.
–(2020e),TheOilandGasIndustryinEnergyTransitions,https://www.iea.org/reports/the‐
oil‐and‐gas‐industry‐in‐energy‐transitions.
–(2020f),WorldEnergyOutlook2020,https://www.iea.org/reports/world‐energy‐outlook
2020.
–(2020g), The Role of CCUS in Low‐Carbon Power Systems, https://www.iea.org/
reports/the‐role‐of‐ccus‐in‐low‐carbon‐power‐systems.
–(2020h), Power Systems in Transition, https://www.iea.org/reports/power‐systems‐in‐
transition/electricity‐security‐matters‐more‐than‐ever.
–(2020i),EnergyTechnologyPerspectives2020:SpecialReportonCleanEnergyInnovation,
https://www.iea.org/reports/clean‐energy‐innovation.
–(2019a),TheFutureofHydrogen,https://www.iea.org/reports/the‐future‐of‐hydrogen.
–(2019b), Offshore Wind Outlook 2019, https://www.iea.org/reports/offshore‐wind‐
outlook‐2019.
–(2017), Energy Access Outlook 2017: from Poverty to Prosperity: World Energy Outlook
SpecialReport,https://www.iea.org/reports/energy‐access‐outlook‐2017
IEA. All rights reserved.
222 International Energy Agency | Special Report
Kamaya, N. (2011), "A lithium superionic conductor", Nature Materials, pp. 682‐686,
https://doi.org/10.1038/nmat3066.
Liquid Gas Europe (2021), BioLPG: A Renewable Pathway Towards 2050,
https://www.liquidgaseurope.eu/news/biolpg‐a‐renewable‐pathway‐towards‐2050.
Malhotra,A.andT.Schmidt(2020),"AcceleratingLow‐CarbonInnovation",Joule,pp.2259
2267,https://doi.org/10.1016/j.joule.2020.09.004.
MaterialEconomics(2019),IndustrialTransformation2050:PathwaystoNet‐ZeroEmissions
fromEUHeavyIndustry,UniversityofCambridgeforSustainabilityLeadership,Cambridge,
UnitedKingdom.
Mazzucato,M.(2018),"Mission‐orientedInnovationPolicies:ChallengesandOpportunities",
Industrial and Corporate Change, Vol. 27/5, pp. 803‐815, https://doi.org/10.1093/icc/
dty034.
NASEOand Energy Futures Initiative(2021), United States Energy & Employment Report,
https://www.usenergyjobs.org/.
NEA (Nuclear Energy Agency) (2016), Cost Benchmarking for Nuclear Power Plant
Decommissioning,https://doi.org/10.1787/acae0e3b‐en.
OECD(OrganisationforEconomicCooperationandDevelopment)(2020),Environmentally
relatedtaxrevenue,OECDStatistics,https://stats.oecd.org/.
–(2015),The Economic ConsequencesofClimate Change,https://www.oecd.org/env/the‐
economic‐consequences‐of‐climate‐change‐9789264235410‐en.htm.
Tenova (2018), HYL News, https://www.tenova.com/fileadmin/user_upload/HYL_News_‐
_December_2018.pdf.
Victor,D.,Geels,F.andS.Sharpe(2019),AcceleratingtheLowCarbonTransition:Thecase
for stronger, more targetedandco‐ordinated international action,TheEnergyTransitions
Commission,London.
Zemships (2008), One Hundred Passengers and Zero Emissions: The first‐ever passenger
vessel to sail propelled by fuel cells, https://ec.europa.eu/environment/life/project/
Projects/index.cfm?fuseaction=home.s.
AnnexB:Technologycosts
IEA (International Energy Agency) (2020), World Energy Outlook 2020,
https://www.iea.org/reports/world‐energy‐outlook‐2020.
–(2019), Offshore Wind Outlook 2019, IEA, Paris, https://www.iea.org/reports/offshore‐
wind‐outlook‐2019.
IRENA(InternationalRenewableEnergyAgency)(2020),RenewableCostingAlliance,IRENA,
AbuDhabi,https://www.irena.org/statistics,accessed15July2020.
This publicaon reflects the views of the IEA Secretariat but does not necessarily reflect
those of individual IEA member countries. The IEA makes no representaon or warranty,
express or implied, in respect of the publicaons contents (including its completeness or
accuracy) and shall not be responsible for any use of, or reliance on, the publicaon. Unless
otherwise indicated, all material presented in gures and tables is derived from IEA data
and analysis.
This publication and any map included herein are without prejudice to the status of
or sovereignty over any territory, to the delimitation of international frontiers and
boundaries and to the name of any territory, city or area.
Revised version, October 2021 (4
th
revision).
Information notice found at: www.iea.org/corrections
IEA. All rights reserved.
IEA Publications
International Energy Agency
Website: www.iea.org
Contact information: www.iea.org/about/contact
Typeset in France by IEA - May 2021
Cover design: IEA
Photo credits: © ShutterStock